Skip to main content

In-silico Gene Annotation Prediction Using the Co-expression Network Structure

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 882))

Included in the following conference series:

Abstract

Identifying which genes are involved in particular biological processes is relevant to understand the structure and function of a genome. A number of techniques have been proposed that aim to annotate genes, i.e., identify unknown biological associations between biological processes and genes. The ultimate goal of these techniques is to narrow down the search for promising candidates to carry out further studies through in-vivo experiments. This paper presents an approach for the in-silico prediction of functional gene annotations. It uses existing knowledge body of gene annotations of a given genome and the topological properties of its gene co-expression network, to train a supervised machine learning model that is designed to discover unknown annotations. The approach is applied to Oryza Sativa Japonica (a variety of rice). Our results show that the topological properties help in obtaining a more precise prediction for annotating genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abeysinghe, S., Wu, J., Sooriyabandara, M., Abeysekera, M., Xu, T., Wang, C.: Topological properties of medium voltage electricity distribution networks. Appl. Energy 210, 1101–1112 (2018)

    Article  Google Scholar 

  2. Alanis Lobato, G.: Exploitation of complex network topology for link prediction in biological interactomes (2014)

    Google Scholar 

  3. Alanis-Lobato, G., Cannistraci, C.V., Ravasi, T.: Exploitation of genetic interaction network topology for the prediction of epistatic behavior. Genomics 102(4), 202–208 (2013)

    Article  Google Scholar 

  4. Aoki, Y., Okamura, Y., Tadaka, S., Kinoshita, K., Obayashi, T.: ATTED-II in 2016: a plant coexpression database towards lineage-specific coexpression. Plant Cell Physiol. 57(1) (2016)

    Google Scholar 

  5. Barabási, A.-L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011)

    Article  Google Scholar 

  6. Benstead-Hume, G., Wooller, S.K., Dias, S., Woodbine, L., Carr, A.M., Pearl, F.M.G.: Biological network topology features predict gene dependencies in cancer cell lines. Systems Biology (2019, preprint)

    Google Scholar 

  7. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  8. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  9. Jiang, B., Claramunt, C.: Topological analysis of urban street networks. Environ. Plan. 31(1), 151–162 (2004)

    Article  Google Scholar 

  10. Mudge, J.M., Harrow, J.: The state of play in higher eukaryote gene annotation. Nat. Rev. Genet. 17(12), 758–772 (2016)

    Article  Google Scholar 

  11. Naaman, R., Cohen, K., Louzoun, Y.: Edge sign prediction based on a combination of network structural topology and sign propagation. J. Complex Netw. 7(1), 54–66 (2019)

    Article  MathSciNet  Google Scholar 

  12. Obayashi, T., Aoki, Y., Tadaka, S., Kagaya, Y., Kinoshita, K.: ATTED-II in 2018: a plant coexpression database based on investigation of the statistical property of the mutual rank index. Plant Cell Physiol. 59(1) (2018)

    Google Scholar 

  13. Obayashi, T., Kinoshita, K.: Rank of correlation coefficient as a comparable measure for biological significance of gene coexpression. DNA Res. 16(5), 249–260 (2009)

    Article  Google Scholar 

  14. Obayashi, T., Kinoshita, K.: COXPRESdb: a database to compare gene coexpression in seven model animals. Nucleic Acids Res. 39(Database), D1016–D1022 (2011)

    Article  Google Scholar 

  15. Obayashi, T., Okamura, Y., Ito, S., Tadaka, S., Aoki, Y., Shirota, M., Kinoshita, K.: ATTED-II in 2014: evaluation of gene coexpression in agriculturally important plants. Plant Cell Physiol. 55(1) (2014)

    Google Scholar 

  16. Oti, M., van Reeuwijk, J., Huynen, M.A., Brunner, H.G.: Conserved co-expression for candidate disease gene prioritization. BMC Bioinform. 9(1), 208 (2008)

    Article  Google Scholar 

  17. Ranganathan, S., Gribskov, M.R., Nakai, K., Schönbach, C.: Encyclopedia of Bioinformatics and Computational Biology (2019). OCLC: 1052465484

    Google Scholar 

  18. Rust, A.G., Mongin, E., Birney, E.: Genome annotation techniques: new approaches and challenges. Drug Discov. Today 7(11), S70–S76 (2002)

    Article  Google Scholar 

  19. Sakai, H., Lee, S.S., Tanaka, T., Numa, H., Kim, J., Kawahara, Y., Wakimoto, H., Yang, C., Iwamoto, M., Abe, T., Yamada, Y., Muto, A., Inokuchi, H., Ikemura, T., Matsumoto, T., Sasaki, T., Itoh, T.: Rice annotation project database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol. 54(2) (2013)

    Google Scholar 

  20. Santolini, M., Barabási, A.-L.: Predicting perturbation patterns from the topology of biologicalnetworks. Proc. Natl. Acad. Sci. 115(27), E6375–E6383 (2018)

    Article  Google Scholar 

  21. Shannon, P.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

    Article  Google Scholar 

  22. Stuart, J.M.: A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643), 249–255 (2003)

    Article  Google Scholar 

  23. Tan, F., Xia, Y., Zhu, B.: Link prediction in complex networks: a mutual information perspective. PLoS ONE 9(9), e107056 (2014)

    Article  Google Scholar 

  24. van Dam, S., Võsa, U., van der Graaf, A., Franke, L., de Magalhães, J.P.: Gene co-expression analysis for functional classification and gene–disease predictions. Briefings Bioinform. (2017)

    Google Scholar 

  25. Vandepoele, K., Quimbaya, M., Casneuf, T., De Veylder, L., Van de Peer, Y.: Unraveling transcriptional control in arabidopsis using cis-regulatory elements and coexpression networks. Plant Physiol. 150(2), 535–546 (2009)

    Article  Google Scholar 

  26. Yandell, M., Ence, D.: A beginner’s guide to eukaryotic genome annotation. Nat. Rev. Genet. 13(5), 329–342 (2012)

    Article  Google Scholar 

  27. Zhang, H., Zhao, P., Gao, J., Yao, X.-M.: The analysis of the properties of bus network topology in Beijing basing on complex networks. Math. Problems Eng. 1–6, 2013 (2013)

    Google Scholar 

  28. Zhou, Y., Young, J.A., Santrosyan, A., Chen, K., Yan, S.F., Winzeler, E.A.: In silico gene function prediction using ontology-based pattern identification. Bioinformatics 21(7), 1237–1245 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for their helpful comments. This work was funded by the OMICAS program: Optimización Multiescala In-silico de Cultivos Agrícolas Sostenibles (Infraestructura y Validación en Arroz y Caña de Azúcar), sponsored within the Colombian Scientific Ecosystem by The World Bank, Colciencias, Icetex, the Colombian Ministry of Education and the Colombian Ministry of Industry and Turism under Grant FP44842-217-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Romero, M., Finke, J., Quimbaya, M., Rocha, C. (2020). In-silico Gene Annotation Prediction Using the Co-expression Network Structure. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 882. Springer, Cham. https://doi.org/10.1007/978-3-030-36683-4_64

Download citation

Publish with us

Policies and ethics