Advertisement

Network Entropy Reveals that Cancer Resistance to MEK Inhibitors Is Driven by the Resilience of Proliferative Signaling

  • Joel Maust
  • Judith Leopold
  • Andrej BugrimEmail author
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 882)

Abstract

Recently MEK kinase inhibitors emerged as a promising treatment for KRAS-mutant tumors. However, clinical success remains elusive due to drug resistance. To better understand the mechanism of such resistance, we consider drug response as a transition from proliferative to apoptotic state of the molecular network and search for network metrics linked to likelihood of such transition. We focus on the dynamic network entropy – a statistical property related to stability and robustness of network states. We calculate network entropy metrics for approximately 400 cell lines from the Cancer Cell Line Encyclopedia, representing a broad variety of cancers. We investigate correlation between these metrics and cellular response to a MEK-kinase inhibitor drug PD-0325901. We find that network entropy rates of proteins and pathways related to the cell cycle exhibit the most significant differences between groups of sensitive and resistant cell lines. Our results suggest that resistance to MEK kinase inhibition is driven by the overall resilience of the network of proliferative signaling. We confirm this experimentally by observing synergy between MEK and CDK4/6 inhibitors in select cancer cell lines with high network entropy rates of the G2/M transition pathway. Our findings show that network entropy metrics can become a promising predictor of drug sensitivity. They can be used where gene-level markers are not available, provide insights into functional mechanisms of resistance and guide combination therapy selection.

Keywords

Protein interaction networks Network entropy Drug resistance Network robustness 

Notes

Acknowledgments

This work was supported in part by the NIH Cancer Center Support Grant to the Rogel Cancer Center at the University of Michigan (P30 CA046592-29).

References

  1. 1.
    Zeitouni, D., Pylayeva-Gupta, Y., Der, C., Bryant, K.: KRAS mutant pancreatic cancer: no lone path to an effective treatment. Cancers (Basel) 8(4), 45 (2016)CrossRefGoogle Scholar
  2. 2.
    Cancer Genome Atlas Network: Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407), 330–337 (2012)Google Scholar
  3. 3.
    Ferrer, I., Zugazagoitia, J., Herbertz, S., John, W., Paz-Ares, L., Schmid-Bindert, G.: KRAS-mutant non-small cell lung cancer: from biology to therapy. Lung Cancer 124, 53–64 (2018)CrossRefGoogle Scholar
  4. 4.
    Baines, A., Xu, D., Der, C.: Inhibition of Ras for cancer treatment: the search continues. Future Med. Chem. 3(14), 1787–1808 (2011)CrossRefGoogle Scholar
  5. 5.
    Migliardi, G., Sassi, F., Torti, D., et al.: Inhibition of MEK and PI3 K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas. Clin. Cancer Res. 18(9), 2515–2525 (2012)CrossRefGoogle Scholar
  6. 6.
    Infante, J., Fecher, L., Falchook, G., et al.: Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. Lancet Oncol. 13(8), 773–781 (2012)CrossRefGoogle Scholar
  7. 7.
    Lee, M., Helms, T., Feng, N., et al.: Efficacy of the combination of MEK and CDK4/6 inhibitors in vitro and in vivo in KRAS mutant colorectal cancer models. Oncotarget 7(26), 39595–39608 (2016)CrossRefGoogle Scholar
  8. 8.
    Ziemke, E., Dosch, J., Maust, J., Shettigar, A., Sen, A., Welling, T., Hardiman, K., Sebolt-Leopold, J.: Sensitivity of KRAS-mutant colorectal cancers to combination therapy that cotargets MEK and CDK4/6. Clin. Cancer Res. 22(2), 405–414 (2016)CrossRefGoogle Scholar
  9. 9.
    Pek, M., Yatim, S., Chen, Y., Li, J., Gong, M., Jiang, X., Zhang, F., Zheng, J., Wu, X., Yu, Q.: Oncogenic KRAS-associated gene signature defines co-targeting of CDK4/6 and MEK as a viable therapeutic strategy in colorectal cancer. Oncogene 36(35), 4975–4986 (2017)CrossRefGoogle Scholar
  10. 10.
    Zhou, J., Zhang, S., Chen, X., Zheng, X., Yao, Y., Lu, G., Zhou, J.: Palbociclib, a selective CDK4/6 inhibitor, enhances the effect of selumetinib in RAS-driven non-small cell lung cancer. Cancer Lett. 408, 130–137 (2017)CrossRefGoogle Scholar
  11. 11.
    Remacle, F., Levine, R.: Statistical thermodynamics of transcription profiles in normal development and tumorigeneses in cohorts of patients. Eur. Biophys. J. 244(8), 709–726 (2015)CrossRefGoogle Scholar
  12. 12.
    Rietman, E., Platig, J., Tuszynski, J., Lakka Klement, G.: Thermodynamic measures of cancer: gibbs free energy and entropy of protein-protein interactions. J. Biol. Phys. 42(3), 339–350 (2016)CrossRefGoogle Scholar
  13. 13.
    Rietman, E., Scott, J., Tuszynski, J., Klement, G.: Personalized anticancer therapy selection using molecular landscape topology and thermodynamics. Oncotarget 8(12), 18735–18745 (2017)CrossRefGoogle Scholar
  14. 14.
    Atkins, P., De Paula, J.: Atkins’ Physical Chemistry, 6th edn. Oxford University Press, Oxford (2006)Google Scholar
  15. 15.
    Dueck, H., Khaladkar, M., Kim, T., et al.: Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation. Genome Biol. 16(1), 122 (2015)CrossRefGoogle Scholar
  16. 16.
    Eberwine, J., Kim, J.: Cellular deconstruction: finding meaning in individual cell variation. Trends Cell Biol. 25(10), 569–578 (2015)CrossRefGoogle Scholar
  17. 17.
    Marinov, G., Williams, B., McCue, K., et al.: From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 24(3), 496–510 (2014)CrossRefGoogle Scholar
  18. 18.
    Shalek, A., Satija, R., Adiconis, X., et al.: Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498(7453), 236–240 (2013)CrossRefGoogle Scholar
  19. 19.
    Davies, P., Demetrius, L., Tuszynski, J.: Cancer as a dynamical phase transition. Theor. Biol. Med. Model. 8, 30 (2011)CrossRefGoogle Scholar
  20. 20.
    Manke, T., Demetrius, L., Vingron, M.: An entropic characterization of protein interaction networks and cellular robustness. J. R. Soc. Interface 3(11), 843–850 (2006)CrossRefGoogle Scholar
  21. 21.
    Manke, T., Demetrius, L., Vingron, M.: Lethality and entropy of protein interaction networks. Genome Inform. 16(1), 159–163 (2005)Google Scholar
  22. 22.
    Teschendorff, A., Sollich, P., Kuehn, R.: Signalling entropy: a novel network-theoretical framework for systems analysis and interpretation of functional omic data. Methods 67(3), 282–293 (2014)CrossRefGoogle Scholar
  23. 23.
    Teschendorff, A., Banerji, C., Severini, S., Kuehn, R., Sollich, P.: Increased signaling entropy in cancer requires the scale-free property of protein interaction networks. Sci. Rep. 5, 9646 (2015)CrossRefGoogle Scholar
  24. 24.
    Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A., et al.: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012)CrossRefGoogle Scholar
  25. 25.
    Keshava Prasad, T., Goel, R., Kandasamy, K., et al.: Human protein reference database–2009 update. Nucl. Acids Res. 37, D767–D772 (2009)CrossRefGoogle Scholar
  26. 26.
    Cancer Cell Line Encyclopedia. https://portals.broadinstitute.org/ccle/home
  27. 27.
    Teschendorff, A., Severini, S.: Increased entropy of signal transduction in the cancer metastasis phenotype. BMC Syst. Biol. 4, 104 (2010)CrossRefGoogle Scholar
  28. 28.
    Yu, G., He, Q.: ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol. BioSyst. 12(2), 477–479 (2016)CrossRefGoogle Scholar
  29. 29.
    LoRusso, P., Krishnamurthi, S., Rinehart, J., et al.: Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin. Cancer Res. 16(6), 1924–1937 (2010)CrossRefGoogle Scholar
  30. 30.
    Haura, E., Ricart, A., Larson, T., et al.: A phase II study of PD-0325901, an oral MEK inhibitor, in previously treated patients with advanced non-small cell lung cancer. Clin. Cancer Res. 16(8), 2450–2457 (2010)CrossRefGoogle Scholar
  31. 31.
    Vidal, M., Cusick, M., Barabási, A.: Interactome networks and human disease. Cell 144(6), 986–998 (2011)CrossRefGoogle Scholar
  32. 32.
    Tényi, Á., Cano, I., Marabita, F., et al.: Network modules uncover mechanisms of skeletal muscle dysfunction in COPD patients. J. Transl. Med. 16(1), 34 (2018)CrossRefGoogle Scholar
  33. 33.
    Yue, Z., Arora, I., Zhang, E., Laufer, V., Bridges, S., Chen, J.: Repositioning drugs by targeting network modules: a Parkinson’s disease case study. BMC Bioinform. 18(Suppl. 14), 532 (2017)CrossRefGoogle Scholar
  34. 34.
    Zhang, S.: Comparisons of gene coexpression network modules in breast cancer and ovarian cancer. BMC Syst. Biol. 12(Suppl 1), 8 (2018)CrossRefGoogle Scholar
  35. 35.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998)CrossRefGoogle Scholar
  36. 36.
    Wee, S., Jagani, Z., Xiang, K., Loo, A., Dorsch, M., Yao, Y., Sellers, W., Lengauer, C., Stegmeier, F.: PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res. 69(10), 4286–4293 (2009)CrossRefGoogle Scholar
  37. 37.
    Xu, Y., Dong, Q., Li, F., et al.: Identifying subpathway signatures for individualized anticancer drug response by integrating multi-omics data. J. Transl. Med. 17(1), 255 (2019)CrossRefGoogle Scholar
  38. 38.
    Wang, X., Sun, Z., Zimmermann, M., Bugrim, A., Kocher, J.: Predict drug sensitivity of cancer cells with pathway activity inference. BMC Med. Genomics 12(Suppl. 1), 15 (2019)CrossRefGoogle Scholar
  39. 39.
    Strunz, S., Wolkenhauer, O., de la Fuente, A.: Network-assisted disease classification and biomarker discovery. Methods Mol. Biol. 1386, 353–374 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Michigan Medical SchoolAnn ArborUSA
  2. 2.Silver Beach Analytics, Inc.St. JosephUSA

Personalised recommendations