Patterns of Multiplex Layer Entanglement Across Real and Synthetic Networks

  • Blaž Škrlj
  • Benjamin RenoustEmail author
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 882)


Real world complex networks often exhibit multiplex structure, connecting entities from different aspects of physical systems such as social, transportation and biological networks. Little is known about general properties of such networks across disciplines. In this work, we first investigate how consistent are connectivity patterns across 35 real world multiplex networks. We demonstrate that entanglement homogeneity and intensity, two measures of layer consistency, indicate apparent differences between social and biological networks. We also investigate trade, co-authorship and transport networks. We show that real networks can be separated in the joint space of homogeneity and intensity, demonstrating the usefulness of the two measures for categorization of real multiplex networks. Finally, we design a multiplex network generator, where similar patterns (as observed in real networks), are emerging over the analysis of 11,905 synthetic multiplex networks with various topological properties.


Multiplex networks Edge entanglement Network topology Network generator 



The work of the first author was funded by the Slovenian Research Agency through a young researcher grant. The work of other authors was supported by the Slovenian Research Agency (ARRS) core research programme Knowledge Technologies (P2-0103) and ARRS funded research project Semantic Data Mining for Linked Open Data (financed under the ERC Complementary Scheme, N2-0078). We also acknowledge Dagstuhl seminar-19061 [16] where many ideas implemented in this paper emerged.


  1. 1.
    Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks. Phys. Rev. E 89(3), 032804 (2014)CrossRefGoogle Scholar
  2. 2.
    Borgatti, S.P., Mehra, A., Brass, D.J., Labianca, G.: Network analysis in the social sciences. Science 323(5916), 892–895 (2009)CrossRefGoogle Scholar
  3. 3.
    Burt, R.S., Schøtt, T.: Relation contents in multiple networks. Soc. Sci. Res. 14(4), 287–308 (1985)CrossRefGoogle Scholar
  4. 4.
    Cardillo, A., Gómez-Gardenes, J., Zanin, M., Romance, M., Papo, D., Del Pozo, F., Boccaletti, S.: Emergence of network features from multiplexity. Sci. Rep. 3, 1344 (2013)CrossRefGoogle Scholar
  5. 5.
    Chen, B.L., Hall, D.H., Chklovskii, D.B.: Wiring optimization can relate neuronal structure and function. Proc. Natl. Acad. Sci. 103(12), 4723–4728 (2006)CrossRefGoogle Scholar
  6. 6.
    Chen, X., Wang, R., Tang, M., Cai, S., Stanley, H.E., Braunstein, L.A.: Suppressing epidemic spreading in multiplex networks with social-support. New J. Phys. 20(1), 013007 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Coleman, J., Katz, E., Menzel, H.: The diffusion of an innovation among physicians. Sociometry 20(4), 253–270 (1957)CrossRefGoogle Scholar
  8. 8.
    Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E.D., Sevier, C.S., Ding, H., Koh, J.L., Toufighi, K., Mostafavi, S., et al.: The genetic landscape of a cell. Science 327(5964), 425–431 (2010)CrossRefGoogle Scholar
  9. 9.
    Cozzo, E., Kivelä, M., De Domenico, M., Solé-Ribalta, A., Arenas, A., Gómez, S., Porter, M.A., Moreno, Y.: Structure of triadic relations in multiplex networks. New J. Phys. 17(7), 073029 (2015)CrossRefGoogle Scholar
  10. 10.
    De Domenico, M., Lancichinetti, A., Arenas, A., Rosvall, M.: Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. Phys. Rev. X 5(1), 011027 (2015)Google Scholar
  11. 11.
    De Domenico, M., Nicosia, V., Arenas, A., Latora, V.: Structural reducibility of multilayer networks. Nat. Commun. 6, 6864 (2015)CrossRefGoogle Scholar
  12. 12.
    De Domenico, M., Solé-Ribalta, A., Gómez, S., Arenas, A.: Navigability of interconnected networks under random failures. Proc. Natl. Acad. Sci. 111(23), 8351–8356 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Gomez, S., Diaz-Guilera, A., Gomez-Gardenes, J., Perez-Vicente, C.J., Moreno, Y., Arenas, A.: Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110(2), 028701 (2013)CrossRefGoogle Scholar
  14. 14.
    Kapferer, B.: Strategy and Transaction in an African Factory: African Workers and Indian Management in a Zambian Town. Manchester University Press, Manchester (1972)Google Scholar
  15. 15.
    Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)CrossRefGoogle Scholar
  16. 16.
    Kivelä, M., McGee, F., Melançon, G., Henry Riche, N., von Landesberger, T.: Visual analytics of multilayer networks across disciplines (dagstuhl seminar 19061). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)Google Scholar
  17. 17.
    Krackhardt, D.: Cognitive social structures. Soc. Netw. 9(2), 109–134 (1987)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lazega, E., et al.: The Collegial Phenomenon: The Social Mechanisms of Cooperation Among Peers in a Corporate Law Partnership. Oxford University Press, Oxford (2001)CrossRefGoogle Scholar
  19. 19.
    Magnani, M., Micenkova, B., Rossi, L.: Combinatorial analysis of multiple networks. arXiv preprint arXiv:1303.4986 (2013)
  20. 20.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27(1), 415–444 (2001)CrossRefGoogle Scholar
  21. 21.
    Mittal, R., Bhatia, M.: Analysis of multiplex social networks using nature-inspired algorithms. In: Nature-Inspired Algorithms for Big Data Frameworks, pp. 290–318. IGI Global (2019)Google Scholar
  22. 22.
    Omodei, E., De Domenico, M.D., Arenas, A.: Characterizing interactions in online social networks during exceptional events. Front. Phys. 3, 59 (2015)CrossRefGoogle Scholar
  23. 23.
    Padgett, J.F., Ansell, C.K.: Robust action and the rise of the medici, 1400–1434. Am. J. Sociol. 98(6), 1259–1319 (1993)CrossRefGoogle Scholar
  24. 24.
    Renoust, B., Melancon, G., Munzner, T.: Detangler: visual analytics for multiplex networks. Comput. Graphics Forum 34(3), 321–330 (2015)CrossRefGoogle Scholar
  25. 25.
    Renoust, B., Melançon, G., Viaud, M.L.: Entanglement in multiplex networks: understanding group cohesion in homophily networks. In: Missaoui, R., Sarr, I. (eds.) Social Network Analysis - Community Detection and Evolution, pp. 89–117. Springer, Cham (2014)Google Scholar
  26. 26.
    Škrlj, B., Kralj, J., Lavrač, N.: Py3plex: a library for scalable multilayer network analysis and visualization. In: International Conference on Complex Networks and their Applications, pp. 757–768. Springer (2018)Google Scholar
  27. 27.
    Škrlj, B., Kralj, J., Lavrač, N.: CBSSD: community-based semantic subgroup discovery. J. Intell. Inf. Syst. 53, 1–40 (2019)CrossRefGoogle Scholar
  28. 28.
    Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: Biogrid: a general repository for interaction datasets. Nucleic Acids Res. 34(suppl\(\_\)1), D535–D539 (2006)CrossRefGoogle Scholar
  29. 29.
    Valdeolivas, A., Tichit, L., Navarro, C., Perrin, S., Odelin, G., Levy, N., Cau, P., Remy, E., Baudot, A.: Random walk with restart on multiplex and heterogeneous biological networks. Bioinformatics 35(3), 497–505 (2018)CrossRefGoogle Scholar
  30. 30.
    Vickers, M., Chan, S.: Representing classroom social structure. Victoria Institute of Secondary Education, Melbourne (1981)Google Scholar
  31. 31.
    Wang, W., Cai, M., Zheng, M.: Social contagions on correlated multiplex networks. Physica A Stat. Mech. Appl. 499, 121–128 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wasserman, S., Faust, K.: Social Network Analysis, Methods and Applications. Structural Analysis in the Social Sciences. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Jožef Stefan InstituteLjubljanaSlovenia
  2. 2.Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
  3. 3.Osaka University, Institute for Datability ScienceOsakaJapan

Personalised recommendations