Skip to main content

Application of a Discrete to Continuous Approach Based-Alignment Algorithm for Capillary Electrophoresis DNA Sequencing Correction

  • Conference paper
  • First Online:
Advanced Intelligent Systems for Sustainable Development (AI2SD’2019) (AI2SD 2019)

Abstract

This work presents an application of an alignment algorithm for correction of data obtained from capillary electrophoresis sequencing experiments. Generally, most existing methods, used in this field of application, suffer from a high computation cost. Our method is based on the principle of the discrete to continuous “DTC” approach and tries to find the superposition between the input signal and the reference signal by looking for a transformation based on Euclidean metric. Our algorithm was able to successfully align capillary electrophoresis sequencing data of an HIV gene and correct ambiguities. These results demonstrated that with our approach can achieve high percentage correction with good alignment rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26, 43–49 (1978)

    Article  Google Scholar 

  2. Eddy, S.R.: What is dynamic programming. Nat. Biotechnol. 22, 909–910 (2004)

    Article  Google Scholar 

  3. Munich, M.E., Perona, P.: Visual identification by signature tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25, 200–217 (2003). https://doi.org/10.1109/TPAMI.2003.1177152

    Article  Google Scholar 

  4. Barth, J., Oberndorfer, C., Pasluosta, C., Schlein, S., Gassner, H., Reinfelder, S., Kugler, P., Schuldhaus, D., Winkler, J., Klucken, J., Eskofier, B.M.: Stride segmentation during free walk movements using multi-dimensional subsequence dynamic time warping on inertial sensor data. Sensors 15, 6419–6440 (2015). https://doi.org/10.3390/s150306419

    Article  Google Scholar 

  5. Niennattrakul, V., Ratanamahatana, C.A.: On clustering multimedia time series data using K-means and dynamic time warping. In: International Conference on Multimedia and Ubiquitous Engineering, pp. 733–738 (2007). https://doi.org/10.1109/mue.2007.165

  6. Petitjean, F., Ketterlin, A., Gançarski, P.: A global averaging method for dynamic time warping, with applications to clustering. Pattern Recogn. 44, 678–693 (2011)

    Article  Google Scholar 

  7. Kahveci, T., Singh, A., Gurel, A.: Similarity searching for multi-attribute sequences. In: Proceedings of the Scientific and Statistical Database Management, pp. 175–184 (2002). https://doi.org/10.1109/ssdm.2002.1029718

  8. Aach, J., Church, G.M.: Aligning gene expression time series with time warping. Bioinformatics 17, 495–508 (2001). https://doi.org/10.1093/bioinformatics/17.6.495

    Article  Google Scholar 

  9. Clifford, D., Stone, G., Montoliu, I., Rezzi, S., Martin, F.P., Guy, P., Bruce, S., Kochhar, S.: Alignment using variable penalty dynamic time warping. Anal. Chem. 81, 1000–1007 (2009). https://doi.org/10.1021/ac802041e

    Article  Google Scholar 

  10. Karabiber, F.: A peak alignment algorithm with novel improvements in application to electropherogram analysis. J. Bioinf. Comput. Biol. 11, 1350011 (2013). https://doi.org/10.1142/S021972001350011X

    Article  Google Scholar 

  11. Folgado, D., Barandas, M., Matias, R., Martins, R., Carvalho, M.: Time alignment measurement for time series. Pattern Recogn. 81, 268–279 (2018). https://doi.org/10.1016/j.patcog.2018.04.003

    Article  Google Scholar 

  12. Navarro, E., Fabrègue, O., Scorretti, R., Reboulet, J., Simonet, P., Dawson, L., Demanèche, S.: Risa aligner software for aligning fluorescence data between agilent 2100 bioanalyzer chips: application to soil microbial community analysis. BioTechniques 59, 347–358 (2015). https://doi.org/10.2144/000114363

    Article  Google Scholar 

  13. Robinson, M.D., De Souza, D.P., Keen, W.W., Saunders, E.C., McConville, M.J., Speed, T.P., Liki´c, V.A.: A dynamic programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry experiments. BMC Bioinf. 8, 419 (2007). https://doi.org/10.1186/1471-2105-8-419

    Article  Google Scholar 

  14. Aqili, N., Hammouch, A., Raji, M.: PPM translation, rotation and scale in D-dimensional space by the discrete to continuous approach. Int. Rev. Comput. Softw. IRECOS 11, 270–276 (2016)

    Article  Google Scholar 

  15. Aqili, N., Maazouzi, A., Raji, M., Jilbab, A., Chaouki, S., Hammouch, A.: Fingerprint matching algorithm. In: International Conference on Electrical and Information Technologies (ICEIT), pp. 414–417 (2016). https://doi.org/10.1109/eitech.2016.7519632

  16. Aqili, N., Maazouzi, A., Raji, M., Jilbab, A., Chaouki, S., Hammouch, A.: On-line signature verification using point pattern matching algorithm. In: (ICEIT), pp. 410–413 (2016). https://doi.org/10.1109/eitech.2016.7519632

  17. Maazouzi, A., Aqili, N., Raji, M., Hammouch, A.: A speaker recognition system using power spectrum density and similarity measurements. In: 2015 Third World Conference Complex Systems (WCCS), pp. 1–5 (2015). https://doi.org/10.1109/icocs.2015.7483213

  18. Rhalem, W., Raji, M., Hammouch, A., El Mhamdi, J.: An automated time-shift alignment algorithm based on Discret to continuous approach. J. Comput. Sci. 15, 463–474 (2019). https://doi.org/10.3844/jcssp.2019.463.474

    Article  Google Scholar 

  19. Godil, A., Dutagaci, H., Akgül, C.B., Axenopoulos, A., Bustos, B., Chaouch, M., Daras, P., Furuya, T., Kreft, S., Lian, Z.: SHREC’09 track: generic shape retrieval. In: 3DOR, pp. 61–68 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wajih Rhalem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rhalem, W. et al. (2020). Application of a Discrete to Continuous Approach Based-Alignment Algorithm for Capillary Electrophoresis DNA Sequencing Correction. In: Ezziyyani, M. (eds) Advanced Intelligent Systems for Sustainable Development (AI2SD’2019). AI2SD 2019. Advances in Intelligent Systems and Computing, vol 1105. Springer, Cham. https://doi.org/10.1007/978-3-030-36674-2_15

Download citation

Publish with us

Policies and ethics