Advertisement

Optimization of Parameters Extraction of Natural Antioxidant from Moroccan Grape Pomace

  • Safae El Alami El HassaniEmail author
  • Anas Driouich
  • Hamid Mellouk
  • Bouchra Bejjany
  • Adil Dani
  • Hassan Chaair
  • Khalid Digua
Conference paper
  • 28 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1104)

Abstract

The aim of this work is to quantify the polyphenols compounds existing in Moroccan grapes skins and to evaluate their antioxidant activity using the response surface methodology in order to optimize parameters influencing the extraction method. The effect of extraction duration (15–155 min), the temperature (27–63 °C), the percent of methanol (30–90%) and the particle size (125–425 µm) on the polyphenols yields and the antioxidant activity measured by the capacity of scavenging free radical DPPH were evaluated.

Keywords

Extraction Total polyphenol compounds Antioxidant activity Experimental design Response surface methodology 

References

  1. 1.
    Fontana, A.R., Antoniolli, A., Bottini, R.: Grape pomace as a sustainable source of bioactive compounds: extraction, characterization, and biotechnological applications of phenolics. J. Agric. Food Chem. 61, 8987–9003 (2013).  https://doi.org/10.1021/jf402586fCrossRefGoogle Scholar
  2. 2.
    Spigno, G., De Faveri, D.M.: Antioxidants from grape stalks and marc: influence of extraction procedure on yield, purity and antioxidant power of the extracts. J. Food Eng. 78, 793–801 (2007).  https://doi.org/10.1016/j.jfoodeng.2005.11.020CrossRefGoogle Scholar
  3. 3.
    Halpern, M.J., Dahlgren, A.L., Laakso, I., Seppanen-Laakso, T., Dahlgren, J., McAnulty, P.A.: Red-wine polyphenols and inhibition of platelet aggregation: possible mechanisms, and potential use in health promotion and disease prevention. J. Int. Med. Res. 26, 171–180 (1998).  https://doi.org/10.1177/030006059802600401CrossRefGoogle Scholar
  4. 4.
    Stevenson, D.E., Hurst, R.D.: Polyphenolic phytochemicals-just antioxidants or much more. Cell. Mol. Life Sci. CMLS 64, 2900–2916 (2007).  https://doi.org/10.1007/s00018-007-7237-1CrossRefGoogle Scholar
  5. 5.
    Benlloch-Tinoco, M., Kaulmann, A., Corte-Real, J., Rodrigo, D., Martínez-Navarrete, N., Bohn, T.: Chlorophylls and carotenoids of kiwifruit puree are affected similarly or less by microwave than by conventional heat processing and storage. Food Chem. 187, 254–262 (2015).  https://doi.org/10.1016/j.foodchem.2015.04.052CrossRefGoogle Scholar
  6. 6.
    Bonfigli, M., Godoy, E., Reinheimer, M.A., Scenna, N.J.: Comparison between conventional and ultrasound-assisted techniques for extraction of anthocyanins from grape pomace. Experimental results and mathematical modeling. J. Food Eng. 207, 56–72 (2017).  https://doi.org/10.1016/j.jfoodeng.2017.03.011CrossRefGoogle Scholar
  7. 7.
    Hogan, Z., Zhang, L., Li, J., Sun, S., Caning, C., Zhou, K.: Antioxidant rich grape pomace extract suppresses postprandial hyperglycemia in diabetic mice by specifically inhibiting alpha-glucosidase. Nutr. Metab. (Lond) 7, 71 (2010).  https://doi.org/10.1186/1743-7075-7-71CrossRefGoogle Scholar
  8. 8.
    Hernan, H.T., Marcela, A.S., Luis, M.M., Luisa, B., Jorge, Q., Luis, M.C.: Valorization of grape pomace: extraction of bioactive phenolics with antioxidant properties. Ind. Crop Product 74(397), 406 (2015).  https://doi.org/10.1016/j.indcrop.2015.05.055CrossRefGoogle Scholar
  9. 9.
    Amendola, D., De Faveri, D.M., Spigno, G.: Grape marc phenolics: extraction kinetics, quality and stability of extracts. J. Food Eng. 97, 384–392 (2010).  https://doi.org/10.1016/j.jfoodeng.2009.10.033CrossRefGoogle Scholar
  10. 10.
    Caldasa, T.W., Mazzab, K.E.L., Telesb, A.S.C., Mattosa, G.N., Brígidac, A.I.S., Conte-Juniord, C.A., Borguinic, R.G., Godoyc, R.L.O., Cabralc, L.M.C., Tononc, R.V.: Phenolic compounds recovery from grape skin using conventional and nonconventional extraction methods. Ind. Crops Products 111, 86–91 (2018).  https://doi.org/10.1016/j.indcrop.2017.10.012CrossRefGoogle Scholar
  11. 11.
    Caldas, T.W., EL Mazza, K., Teles, A.S.C., Mattos, G.N., Brígida, A.I.S., Conte-Junior, C.A., Borguini, R.G., Godoy, R.L.O., Cabral, L.M.C., Tonon, R.V.: Phenolic compounds recovery from grape skin using conventional and nonconventional extraction methods. Ind. Crops Product 111, 86–91 (2018).  https://doi.org/10.1016/j.indcrop.2017.10.012CrossRefGoogle Scholar
  12. 12.
    Belouafa, S., Chaair, H., Digua, K.: Utilisation de la méthodologie des plans d’expériences pour la synthèse d’une apatite phosphocalcique à caractère antiseptique. Phosphorus Sulfurand Silicone 181, 337–349 (2006).  https://doi.org/10.1080/104265090970395CrossRefGoogle Scholar
  13. 13.
    JMP version 11: Using JMP. SAS Institute, Cary, NC (2013)Google Scholar
  14. 14.
    Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M.: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299, 152–178 (1999).  https://doi.org/10.1016/S0076-6879(99)99017-1CrossRefGoogle Scholar
  15. 15.
    Jun, Y., Katherine, J.M., Jan, V.D.H., Rui, H.L.: Varietal differences in phenolic content and antioxidant and antiproliferative activities of onions. J. Agric. Food Chem. 52(22), 6787–6793 (2004).  https://doi.org/10.1021/jf0307144CrossRefGoogle Scholar
  16. 16.
    Marqués, J.L., Della Porta, G., Reverchon, E., Renuncio, J.A.R., Mainar, A.M.: supercritical antisolvent extraction of antioxidants from grape seeds after vinification. J. Supercrit. Fluids 82, 238–243 (2013).  https://doi.org/10.1016/j.supflu.2013.07.005CrossRefGoogle Scholar
  17. 17.
    Hogan, S., Zhang, L., Li, J., Zoecklein, B., Zhou, K.: Food Sci. Technol. 42, 1269–1274 (2009).  https://doi.org/10.21548/38-2-1605CrossRefGoogle Scholar
  18. 18.
    Lue, B.M., Nielsen, N.S., Jacobsen, C., Hellgren, L., Guo, Z., Xu, X.: Antioxidant properties of modified rutin esters by DPPH, reducing power, iron chelation and human low density lipoprotein assays. Food Chem. 123, 221–230 (2010).  https://doi.org/10.1016/j.foodchem.2010.04.009Google Scholar
  19. 19.
    Box, E.P.G., Hunter, G.W., Hunter, S.J.: Statistics for experimenters: an introduction to design, data analysis, and model building (1978)Google Scholar
  20. 20.
    Zaroual, Z., Chaair, H., Essadki, A.H., Ass, K.E., Azzi, M.: Optimizing the removal of trivalent chromium by electrocoagulation using experimental design. Chem. Eng. J. 148(2-3), 488–495 (2009)CrossRefGoogle Scholar
  21. 21.
    Aslan, N.: Application of response surface methodology and central composite rotatable design for modeling the influence of some operating variables of a Multi-Gravity Separator for coal cleaning. Fuelfirst 86, 769–776 (2007)Google Scholar
  22. 22.
    Sahu, J.N., Acharya, J., Meikap, B.C.: Response surface modelling and optimization of chromium (VI) removal from aqueous solution using tamarind wood activated carbon in batch process. J. Hazard. Mater. 172, 818–825 (2009)CrossRefGoogle Scholar
  23. 23.
    Martin-Lara, M.A., Rodriguez, I.L., Blazquez, G., Calero, M.: Factorial experimental design for optimizating the removal conditions of lead ions from aqueous solutions by three wastes of the olive-oil production. Desalination 278, 132–140 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Safae El Alami El Hassani
    • 1
    Email author
  • Anas Driouich
    • 1
  • Hamid Mellouk
    • 1
  • Bouchra Bejjany
    • 1
  • Adil Dani
    • 1
  • Hassan Chaair
    • 1
  • Khalid Digua
    • 1
  1. 1.Laboratory of Process Engineering and Environment Faculty of Science and TechnologyHassan II UniversityMohammediaMorocco

Personalised recommendations