A DEVS/MAS-Based Framework for Modeling/Simulation of Complex Systems

  • Noureddine SeddariEmail author
  • Mohammed Redjimi
  • Mohamed Belaoued
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1104)


This paper presents an approach for modeling and simulation of complex systems. This approach is based on the decomposition of the considered systems into sub-systems which appear on two levels: On the lower level; the decomposition concerns the division of a global system into atomic and coupled models based on DEVS formalism (Discrete Event Systems Specification). The system components are then represented using the DEVS mathematical equations. This step allows the formal system checking. At the higher lever, the implementation of the obtained DEVS models is realized using Multi-Agents Systems (MAS) based on Agent/Role/Group (AGR). Moreover, a set of procedures and functions permitting to transform DEVS to MAS models are defined and implemented. The main advantages of this approach are its adaptability for various domains, its flexibility (easy to implement), its extensibility (adding new components). A version of this work will be implemented using a functional extension of the Multi Agent Development KIT platform (MAD-KIT).


Complex systems Discrete Event Systems Specification (DEVS) Modeling and simulation Multi-Agent Systems (MAS) AGR model (Agent/Group/Role) MAD-KIT 


  1. 1.
    Simon, H.A.: The Sciences of the Artificial. MIT Press, Cambridge (1969)Google Scholar
  2. 2.
    Bertalanffy, L.V.: Théorie générale des systèmes. Dunod (1968)Google Scholar
  3. 3.
    Fishwick, P.A.: Simulation Model Design and Execution. Building Digital Worlds. Prentice Hall, Upper Saddle River (1995)Google Scholar
  4. 4.
    Sonnessa, M.: Modelling and simulation of complex systems. Doctoral dissertation, Ph.D. thesis in “Cultura e impresa”, University of Torino, Italy (2004)Google Scholar
  5. 5.
    Shannon, R.E.: Simulation modeling and methodology. In: Proceedings of the 76 Bicentennial Conference on Winter Simulation, pp. 9–15 (1976)Google Scholar
  6. 6.
    Oussalah, C.: Modèles hiérachisés multi-vues pour le support de raisonnement dans les domaines techniques. Technical report (1998)Google Scholar
  7. 7.
    Ingalls, R.G.: Introduction to simulation. In: Proceedings of the 33nd Conference on Winter Simulation, pp. 7–16. IEEE Computer Society (2001)Google Scholar
  8. 8.
    Shannon, R.E.: Introduction to the art and science of simulation. In: Proceedings of the 30th Conference on Winter Simulation, pp. 7–14. IEEE Computer Society Press (1998)Google Scholar
  9. 9.
    Fishwick, P.A.: Computer simulation: growth through extension. Trans. Soc. Comput. Simul. Int. 14(1), 13–23 (1997)Google Scholar
  10. 10.
    Vangheluwe, H.: Foundations of modelling and simulation of complex systems. Electron. Commun. EASST (2008). 10: Graph Transformation and Visual Modeling Techniques.
  11. 11.
    Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation, Second edn. Academic Press, Cambridge (2000)Google Scholar
  12. 12.
    Gutknecht, O., Ferber, J.: The MadKit agent plateforme architecture. Laboratoire d’Informatique, Robotique et Microélectronique de Montpellier (2000)Google Scholar
  13. 13.
    Ferber, J.: Les systèmes multi-agents : vers une intelligence collective. Informatique, intelligence Artificielle, Intereditions, Paris (1995)Google Scholar
  14. 14.
    Ferber, J.: Les systèmes multi-agents: un aperçu général. Revue Technique et Science Informatiques 16(8), 979–1012 (1997). Hermes-LavoisierGoogle Scholar
  15. 15.
    Michel, F., Ferber, J., Drogoul, A.: Multi-agent systems and simulation: a survey from the agent’s community perspective. In: Uhrmacher, A.M., Weyns, D. (eds.) Multi-Agent Systems: Simulation and Application, pp. 3–52. CRC Press, Boca Raton (2009)Google Scholar
  16. 16.
    Ferber, J., Gutknecht, O.: Aalaadin: a meta-model for the analysis and design of organizations in multi-agent systems. In: Demazeau, Y. (ed.) ICMAS International Conference on Multi-Agent Systems, Paris, pp. 128–135. IEEE Press (1998)Google Scholar
  17. 17.
    Seddari, N., Redjimi, M., Benoudina, L.: Operational approach for modeling and simulation of an industrial process. In: 2013 International Conference on Computer Applications Technology (ICCAT), pp. 1–6. IEEE, January 2013.
  18. 18.
    Seddari, N., Redjimi, M.: Multi-agent modeling of a complex system. In: 2013 3rd International Conference on Information Technology and e-Services (ICITeS), pp. 1–6. IEEE, March 2013.
  19. 19.
    Seddari, N., Belaoued, M., Bougueroua, S.: Agent/group/role organizational model to simulate an industrial control system. World Acad. Sci. Eng. Technol. Int. J. Soc. Behav. Educ. Econ. Bus. Ind. Eng. 11(10), 2376–2385 (2017)Google Scholar
  20. 20.
    Seddari, N., Redjimi, M.: Multi-agent modeling of a complex system. DLINE J. – Trans. Mach. Des. (TMD) 1(2), 61–75 (2013)Google Scholar
  21. 21.
    Vangheluwe, H.: The discrete event system specification DEVS formalism. Technical report (2001).
  22. 22.
    Barros, F.: Dynamic structure discrete event system specification: a new Formalism for dynamic structure modelling and simulation. In: Proceedings of Winter Simulation Conference (1995)Google Scholar
  23. 23.
    Uhrmarcher, A.: Dynamic structures in modeling and simulation: a reflective approach. ACM Trans. Modeling Comput. Simul. 11(2001), 206–232 (2001)CrossRefGoogle Scholar
  24. 24.
    Ntaimo, L., Zeigler, B.P.: Expressing a forest cell model in parallel DEVS and timed cell-DEVS formalisms. In: Proceedings of the 2004 Summer Computer Simulation Conference (2004)Google Scholar
  25. 25.
    Troccoli, A., Wainer, G.: Implementing parallel cell-DEVS. In: IEEE Proceedings of the 36th Annual Simulation Symposium (2003)Google Scholar
  26. 26.
    Davilla, J., Uzcategui, M.: GALATEA: a multi_agent simulation platform. In: International Conference on Modelling, Simulation and Neural Networks, MSNN 2000, Mérida Venezuela (2000)Google Scholar
  27. 27.
    Davilla, J., Gomez, E., Lafaille, K., Tucci, K., Uzcategui, M.: Multi agent distributed simulation with GALATEA. In: Proceedings of the 2005 Ninth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT 2005) (2005)Google Scholar
  28. 28.
    Mattei, S., Bisgambiglia, P.A., Delhom, M., Vittori, E.: Towards discrete event multi agent platform specification, computation tools. In: 2012: The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking, pp. 14–21 (2012)Google Scholar
  29. 29.
    Uhrmacher, A.M., Shattenberg, B.: Agents in discrete event simulation. In: Proceedings of ESS 1998 (1998)Google Scholar
  30. 30.
    Himmelspach, J., Röhl, M., Uhrmacher, A.M.: Component based modelling and simulation for valid multi-agent system simulations. Int. J. Appl. Artif. Intell. 24(5), 414–442 (2010)CrossRefGoogle Scholar
  31. 31.
    Himmelspach, J.: JAMES II: extending, using, and experiments. In: Proceedings of the 5th Simutools Conference ICST, pp. 208–210 (2012)Google Scholar
  32. 32.
    Weyns, D., Van Dyke Panurak, H., Michel, F., Holvoet, T., Ferber, J.: Environments for multi agent systems state of the art and research challenges. In: Weyns, D., Dyke Panurak, H., Michel, F. (eds.) Environments for Multi-agent Systems. Lecture Notes in Computer Science, vol. 3374, pp. 1–47. Springer, Heidelberg (2005)Google Scholar
  33. 33.
    Weyns, D., Schumacher, M., Ricci, A., Viroli, M., Holvoet, T.: Environments in multi-agent systems. Knowl. Eng. Rev. 20(02), 127–141 (2005)Google Scholar
  34. 34.
    Wooldridge, M.: An Introduction to Multi-agent Systems, 2nd edn. Wiley, Chistester (2009)Google Scholar
  35. 35.
    Steiniger, A., Krüger, F., Uhrmacher, A.M.: Modeling agents and their environment in multi-level-DEVS. In: Proceedings of the Winter Simulation Conference (2012)Google Scholar
  36. 36.
    Ramat, E., Preux, P.: Virtual Laboratory Environment (VLE): a software environment oriented agent and object for modeling and simulation of complex systems. Simul. Model. Practice Theory 11(01), 45–55 (2003)CrossRefGoogle Scholar
  37. 37.
    Quesnel, G., Duboz, R., Ramat, E.: The virtual laboratory environment – an operational framework for multi-modelling and analysis of complex dynamical systems. Simul. Model. Practice Theory 17(4), 641–653 (2009)CrossRefGoogle Scholar
  38. 38.
    Ilachinski, A.: Cellular Automata, a Discrete Universe, World Scientific Publishing Co, Singapore (2001). ISBN 981-02-4623-4Google Scholar
  39. 39.
    Wainer, G.A., Giambiasi, N.: Application of the cell-DEVS paradigm for cell spaces modelling and simulation. Simulation 76(01), 22–39 (2001)CrossRefGoogle Scholar
  40. 40.
    Seddari, N., Redjimi, M., Boukelkoul, S.: Using of DEVS and MAS tools for modeling and simulation of an industrial steam generator. CIT 22, 171–189 (2014). Scholar
  41. 41.
    Ben-Naoum, L., Boel, R., Bongaerts, L., De Schutter, B., Peng, Y., Valckenaers, P., Vandewalle, J., Wertz, V.: Methodologies for discrete event dynamic systems: a survey. J. A 36(4), 3–14 (1995)Google Scholar
  42. 42.
    Seddari, N.: Outils formels et opérationnels pour la modélisation et la simulation des systèmes complexes. Doctoral dissertation, Université de Skikda (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Noureddine Seddari
    • 1
    • 2
    Email author
  • Mohammed Redjimi
    • 1
  • Mohamed Belaoued
    • 2
  1. 1.Department of Computer Science20 August 1955 University of SkikdaSkikdaAlgeria
  2. 2.LIRE Laboratory, Software Technologies and Information Systems DepartmentUniversity of Abdelhamid MehriConstantineAlgeria

Personalised recommendations