Advertisement

Combination of DSM and MCDM Methods for Failure Mode and Effects Analysis

  • Ilyas MzouguiEmail author
  • Zoubir El Felsoufi
Conference paper
  • 30 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1104)

Abstract

Failure mode and effect and criticality analysis (FMEA) is a safety and reliability analysis tool that systematically identifies the consequences of components failures on a system and determines consequently the impact of each failure mode.

Thanks to its effectiveness, it becomes the principal tool for risk management. However, many researchers consider that it has many weaknesses. The conventional RPN equation has been considerably criticized to be simplistic and strongly sensitive to variations. This equation doesn’t support weight for factors and the obtained result could be inaccurate. Moreover, FMEA need the availability for all data and information before starting the analysis.

This article proposes an improvement of FMEA by the use of the multi-criteria decision methods and the design structure matrix. The DSM method will be used to identify the interactions between failures and the Fuzzy technique for order preferences by similarity to ideal solution (FTOPSIS) will be used to obtain values for each relationship. In the end, this method will be applied to study failures on a product under development.

Keywords

FMECA RPN DSM Fuzzy AHP FTOPSIS 

References

  1. 1.
    Verband der Automobilindustrie: Quality Management in the Automotive Industry. Product and Process FMEA 4, June 2012Google Scholar
  2. 2.
    Vernez, D., Vuille, F.: Method to assess and optimise dependability of complex macro-systems: application to a railway signalling system. Saf. Sci. 47(3), 382–394 (2009)CrossRefGoogle Scholar
  3. 3.
    Koning, J., Jaspers, R., Doornink, J., Ouwehand, B., Klinkhamer, F., Snijders, B., Sadakov, S.: Maintenance implications of critical components in ITER CXRS upper port plug design. Fusion Eng. Des. 84(7–11), 1091–1094 (2009)CrossRefGoogle Scholar
  4. 4.
    Carbone, T.A., Tippett, D.D.: Project risk management using the project risk FMEA. ASEM (2003)Google Scholar
  5. 5.
    Carmignani, G.: An integrated structural framework to cost-based FMECA: the priority-cost FMECA. Reliab. Eng. Syst. Saf. 94(4), 861–871 (2009)CrossRefGoogle Scholar
  6. 6.
    Bevilacqua, M., Braglia, M., Gabbrielli, R.: Monte Carlo simulation approach for a modified FMECA in a power plant. Qual. Reliab. Eng. Int. 16(14), 313–324 (2000)CrossRefGoogle Scholar
  7. 7.
    Braglia, M.: MAFMA: multi-attribute failure mode analysis. Int. J. Qual. Reliab. Manag. 17, 1017–1033 (2000)CrossRefGoogle Scholar
  8. 8.
    Mandal, S., Maiti, J.: Risk analysis using FMEA: fuzzy similarity value and possibility theory based approach. Expert Syst. Appl. 41(7), 35273537 (2014).  https://doi.org/10.1016/j.eswa.2013.10.058CrossRefGoogle Scholar
  9. 9.
    Braglia, M., Bevilacqua, M.: Fuzzy modeling and analytic hierarchy processing as a means to quantify risk levels associated with failure modes in production systems (2000)Google Scholar
  10. 10.
    Saaty, T.L.: A note on the AHP and expected value theory (1986)Google Scholar
  11. 11.
    Hu, A.H., Hsu, C.W., Kuo, T.-C., Wu, W.-C.: Risk evaluation of green components to hazardous substance using FMEA and FAHP. Expert Syst. Appl. 36, 7142–7147 (2009)CrossRefGoogle Scholar
  12. 12.
    Kutlu, A.C., Ekmekçioğlu, M.: Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP (2011)Google Scholar
  13. 13.
    Braglia, M., Bevilacqua, M.: The analytic hierarchy process applied to maintenance strategy selection (2000)Google Scholar
  14. 14.
    Chin, K.-S., Wang, Y.-M., Poon, G.K.K., Yang, J.-B.: Failure mode and effects analysis using a group-based evidential reasoning approach (2009)Google Scholar
  15. 15.
    Braglia, M., Frosolini, M., Montanari, R.: Fuzzy TOPSIS approach for failure Mode, effects and criticality analysis. Qual. Reliab. Eng. Int. 19, 425–443 (2003)CrossRefGoogle Scholar
  16. 16.
    Wang, L.-E., Liu, H.-C., Quan, M.-Y.: Evaluating the risk of failure modes with a hybrid MCDM model under interval-valued intuitionistic fuzzy environments (2016)Google Scholar
  17. 17.
    Zammori, F., Gabbrielli, R.: ANP/RPN: a multi criteria evaluation of the risk priority number. Qual. Reliab. Eng. Int. 28, 85–104 (2011)CrossRefGoogle Scholar
  18. 18.
    Saaty, T.L., Ozdemir, M.S.: The encyclic on: a dictionary of decisions with dependence and feedback based on Analytic Network Process. RWS Publications, Pittsburgh (2005)Google Scholar
  19. 19.
    Emovon, I., Norman, R.A., Murphy, A.J., Pazouki, K.: An integrated multicriteria decision making methodology using compromise solution methods for prioritizing risk of marine machinery systems. Ocean Eng. 105, 92–103 (2015)CrossRefGoogle Scholar
  20. 20.
    Carpitella, S., Certa, A., Galante, G., Izquierdo, J., La Fata, C.M.: The FTOPSIS method to support FMECA analyses. In: Proceeding of 22th ISSAT International Conference on Reliability and Quality in Design, Los Angeles, California, USA, 4–6 August 2016 (2016)Google Scholar
  21. 21.
    Liu, H.C., You, J.X., Shan, M.M., Shao, L.N.: Failure mode and effects analysis using intuitionistic fuzzy hybrid topsis approach. Soft. Comput. 19(4), 10851098 (2015).  https://doi.org/10.1007/s00500-014-1321-xCrossRefGoogle Scholar
  22. 22.
    Abdelgawad, M., Fayek, A.R.: Risk management in the construction industry using combined fuzzy FMEA and fuzzy AHP. J. Constr. Eng. Manag. 136(9), 1028–1036 (2010)CrossRefGoogle Scholar
  23. 23.
    Yassine, A.A.: An Introduction to Modeling and Analyzing Complex Product Development Processes Using the Design Structure Matrix (DSM) Method, August 2004Google Scholar
  24. 24.
    Tang, D., Zhu, R., Tang, J., Xu, R., He, R.: Product design knowledge management based on design structure (2009)Google Scholar
  25. 25.
    Danilovic, M., Browning, T.R.: Managing complex product development projects with design structure matrices and domain mapping matrices (2006)Google Scholar
  26. 26.
    Fang, C., Marle, F., Vidal, L.-A.: Modelling risk interactions to reevaluate risks in project management. In: 12th International Dependency and Structure Modelling Conference, DSM 2010 (2010)Google Scholar
  27. 27.
    Marle, F., Vidal, L.-A.: Potential applications of DSM principles in project risk management. In: 10th International Design Structure Matrix Conference, DSM 2008 (2008)Google Scholar
  28. 28.
    Seçme, N.Y., Bayrakdaroğlu, A., Kahraman, C.: Fuzzy performance evaluation in Turkish banking sector using analytic hierarchy process and TOPSIS. Experts Syst. Appl. 36, 11699–11709 (2009)CrossRefGoogle Scholar
  29. 29.
    Steward, D.: The design structure matrix: a method for managing the design of complex systems. IEEE Trans. Eng. Manag. 28(3), 71–74 (1981)CrossRefGoogle Scholar
  30. 30.
    Kahraman, C., Cebeci, U., Ulukan, Z.: Multi-criteria supplier selection using fuzzy AHP. Logist. Inf. Manag. 16(6), 382–394 (2003)CrossRefGoogle Scholar
  31. 31.
    Laarhoven, P.M.J., Pedrycz, W.: A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst. 11, 229–241 (1983)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Hwang, C., Yoon, K.: Multiple attribute decision making: methods and applications a state of the art survey. Lecture Notes in Economics and Mathematical Systems, vol. 186. Springer, New York (1981)Google Scholar
  33. 33.
    Chen, C.T.: Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 114(1), 1–9 (2000)CrossRefGoogle Scholar
  34. 34.
    Smith, R.P., Morrow, J.A.: Product development process modeling. Des. Stud. 20, 237–261 (1999)CrossRefGoogle Scholar
  35. 35.
    AIAG Potential Failure Mode and Effects Analysis (FMEA) Reference Manual. Fourth Edition (2008)Google Scholar
  36. 36.
    Buckley, J.J., Feuring, T., Hayashi, Y.: Fuzzy hierarchical analysis revisited. Eur. J. Oper. Res. 129(1), 48–64 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Science and TechniquesTangierMorocco

Personalised recommendations