Advertisement

Characterization of Organic Waste: A Primordial Step for Efficient Valorization by Anaerobic Digestion

  • Nabil SadkiEmail author
  • Abdeslam Taleb
Conference paper
  • 28 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1104)

Abstract

Anaerobic digestion is a process of controlled biological decomposition that takes place without oxygen and that generates both biogas convertible into energy and a valuable solid residue called digestate.

In order to overcome the problems associated with the management of organic waste (food waste, green waste and septics tank’s waste), on a small scale, the development of the anaerobic digestion process could see a potentially significant growth.

The nature of the organic waste can, considerably, differ according to several factors such as the producer, the season, the territory, etc…. It is therefore better to know the characteristics of waste for an efficient valorization by anaerobic digestion.

Results from various papers and studies conducted worldwide have been compiled and statistically analyzed to determine the variability of organic waste characteristics and the effect of these variable values on the anaerobic digestion process.

Then, a characterization of the organic waste, through the analysis of samples taken from the field of study, was accomplished so as to compare the experimental results with the literature and to complement the latter’s data with physical-biochemical characteristics and to relate them to the anaerobic biodegradation potential.

Finally, we used a statistical tool, the mixing plan, to define the mixtures to be tested. The problem that arose was to know, among the waste to be mixed, what proportion of each mono-substrate would give the best Biochemical Methane Potential (BMP) and whether it was possible to highlight synergistic effects between wastes.

Keywords

Organic waste Characterization Mixing plan Anaerobic digestion Biochemical Methane Potential 

References

  1. Adhikari, B.K., Barrington, S., Martinez, J., King, S.: Characterization of food waste and bulking agents for composting. Waste Manag. 28(5), 795–804 (2008)CrossRefGoogle Scholar
  2. Adhikari, B.K., Trémier, A., Barrington, S., Martinez, J.: Biodegradability of municipal organic waste: a respirometric test. Waste and Biomass Valoriz. 4(2), 331–340 (2013)CrossRefGoogle Scholar
  3. Andrews, J.F., Pearson, E.A.: Kinetics and characteristics of volatile acid productions in anaerobic fermentation processes. Int. J. Air Water Pollut. 9, 439 (1965)Google Scholar
  4. Andriani, D., Wresta, A., Saepudin, A., Prawara, B.: A review of recycling of human excreta to energy through biogas generation: Indonesia case. Energy Procedia (2015). core.ac.uk
  5. Banks, C.J., Chesshire, M., Heaven, S., Arnold, R.: Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance. Biores. Technol. 102(2), 612–620 (2011)CrossRefGoogle Scholar
  6. Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H., Vavilin, V.A.: The IWA anaerobic digestion model no. 1 (ADM1). Water Sci. Technol. 45(10), 65–73 (2002)CrossRefGoogle Scholar
  7. Bernard, O., Hadj-Sadok, Z., Dochain, D., Genovesi, A., Steyer, J.-P.: Dynamical modes development and parameter identification for an anaerobic wastewater treatment process. Biotechnol. Bioeng. 75(4), 424–438 (2001)CrossRefGoogle Scholar
  8. Browne, J.D., Allen, E., Murphy, J.D.: Improving hydrolysis of food waste in a leach bed reactor. Waste Manage. 33(11), 2470–2477 (2013)CrossRefGoogle Scholar
  9. Brown, D., Li, Y.: Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Biores. Technol. 127, 275–280 (2013)CrossRefGoogle Scholar
  10. Carlsson, M., Lagerkvist, A., Morgan-Sagastume, F.: The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Manage. 32(9), 1634–1650 (2012).  https://doi.org/10.1016/j.wasman.2012.04.016CrossRefGoogle Scholar
  11. Charles, W., Walker, L., Cord-Ruwisch, R.: Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste. Bioresour. Technol. 100(8), 2329–2335 (2009).  https://doi.org/10.1016/j.biortech.2008.11.051CrossRefGoogle Scholar
  12. Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Biores. Technol. 99(10), 4044–4064 (2008)CrossRefGoogle Scholar
  13. De Vrieze, J., De Lathouwer, L., Verstraete, W., Boon, N.: High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste. Water Res. 47, 3732–3741 (2013)CrossRefGoogle Scholar
  14. El-Mashad, H.M., Zhang, R.: Biogas production from co-digestion of dairy manure and food waste. Biores. Technol. 101(11), 4021–4028 (2010)CrossRefGoogle Scholar
  15. Esposito, G., Frunzo, L., Giordano, A., Liotta, F., Panico, A., Pirozzi, F.: Anaerobic co-digestion of organic wastes. Rev. Environ. Sci. Biotechnol. 11(4), 325–341 (2012).  https://doi.org/10.1007/s11157-012-9277-8CrossRefGoogle Scholar
  16. Eynard, J.: Modélisation, optimisation dynamique et commande d’un méthaniseur par digestion anaerobie. Rapport de projet de fin d’études, Université de Perpignan Via Domitia, Juillet 2007. 80pGoogle Scholar
  17. Fisgativa, H., Tremier, A., Le Roux, S., Bureau, C., Dabert, P.: Understanding the anaerobic biodegradability of food waste: relationship between the typological, biochemical and microbial characteristics. J. Environ. Manag. 188, 95–107 (2017)CrossRefGoogle Scholar
  18. Hill, D.T., Barth, C.L.: A dynamic model for simulation of animal waste digestion. J. WPCF 10, 2129–2143 (1977)Google Scholar
  19. Inanc, B., Matsui, S., Ide, S.: Propionic acid accumulation and controlling factors in anaerobic treatment of carbohydrate: effects of H2 and pH. Water Sci. Technol. (1996). Elsevier.Google Scholar
  20. Kayhanian, M.: Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ. Technol. (1999)Google Scholar
  21. Kiely, G., Tayfur, G., Dolan, C., Tanji, K.: Physical and mathematical modeling of anaerobic digestion of organic wastes. Water Resour. 31, 534–540 (1996)Google Scholar
  22. Lee, Z.-K., Li, S.-L., Lin, J.-S., Wang, Y.-H., Kuo, P.-C., Cheng, S.-S.: Effect of pH in fermentation of vegetable kitchen wastes on hydrogen production under a thermophilic condition. Int. J. Hydrogen Energy 33(19), 5234–5241 (2008)CrossRefGoogle Scholar
  23. Lim, J.W., Wang, J.-Y.: Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste. Waste Manage. 33(4), 813–819 (2013).  https://doi.org/10.1016/j.wasman.2012.11.013CrossRefGoogle Scholar
  24. Lin, Y., Wu, S., Wang, D.: Hydrogen-methane production from pulp & paper sludge and food waste by mesophilic–thermophilic anaerobic co-digestion. Int. J. Hydrogen Energy 38(35), 15055–15062 (2013)CrossRefGoogle Scholar
  25. Liu, C., Yuan, X., Zeng, G., Li, W., Li, J.: Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresour. Technol. 99(4), 882–888 (2008).  https://doi.org/10.1016/j.biortech.2007.01.013CrossRefGoogle Scholar
  26. López, M., Soliva, M., Martínez-Farré, F.X., Fernández, M., Huerta-Pujol, O.: Evaluation of MSW organic fraction for composting: Separate collection or mechanical sorting. Resour. Conserv. Recycl. 54, 222–228 (2010)CrossRefGoogle Scholar
  27. Ma, J., Duong, T.H., Smits, M., Verstraete, W., Carballa, M.: Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresour. Technol. 102(2), 592–599 (2011)CrossRefGoogle Scholar
  28. McCarthy, P.L.: Anaerobic waste treatment fundamentals. Part III: toxic materials and their control. Public Works (1964) Google Scholar
  29. Moletta, R.: Procédés biologiques anaérobies, Dans Gestion des problèmes environnementaux dans les industries agroalimentaires. Technique et documentation-Editions Lavoisier, Paris (2002)Google Scholar
  30. Moletta, R.: La méthanisation. Tec et Doc (2008)Google Scholar
  31. Moletta, R.: La méthanisation. Lavoisier (2011)Google Scholar
  32. Morau, D.: Modélisation des dispositifs de revalorisation énergétiques des déchets solides et liquides (Séchage, Méthanisation, Incinération). Mise en oeuvre d’un outil d’aide à la conception multi-systèmes multi-modèles. Thèse de doctorat, Université de La Réunion (2006). 285pGoogle Scholar
  33. Noykova, N., Müller, T.G., Gyllenberg, M., Timmer, J.: Quantitative analyzed of anaerobic wastewater treatment process: identifiability and parameter estimation. Biotechnol. Bioeng. 78, 89–103 (2002)CrossRefGoogle Scholar
  34. Peu, P., Picard, S., Diara, A., Girault, R., Beline, F., Bridoux, G., Dabert, P.: Prediction of hydrogen sulphide production during anaerobic digestion of organic substrates. Bioresour. Technol. 121, 419–424 (2012)CrossRefGoogle Scholar
  35. Shin, H.-S., Youn, J.-H., Kim, S.-H.: Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int. J. Hydrogen Energy 29(13), 1355–1363 (2004)CrossRefGoogle Scholar
  36. Simeonov, I.V., Momchev, V., Grancharov, D.: Dynamic modeling of mesophilic digestion of animal waste. Water Res. 30, 1087–1094 (1996)CrossRefGoogle Scholar
  37. Spuhler, D.: Etat des Lieux et Suivie de la Station d'Epuration du CREPA-Siege: Evaluation des Performances épuratoires en Comparaison avec les Stations de Lagunage du 2iE et de Kossodo. Ouagadougou: Réseau CREPA (Centre Régional Pour l'Eau Potable et l'Assainissement à faible couts) (2010)Google Scholar
  38. Sterritt, R.M., Lester, J.N.: Interactions of heavy metals with bacteria. Sci. Total Environ. (1980). ElsevierGoogle Scholar
  39. Swanwick, J.D., Shurben, D.G.: Effective chemical treatment for inhibition of anaerobic sewage sludge digestion due to anionic detergents (1969)Google Scholar
  40. Rakotoniaina, V.A.: Co-méthanisation des déchets fermiers et alimentaires: expérimentation et modélisation (2015)Google Scholar
  41. Tampio, E., Ervasti, S., Paavola, T., Heaven, S., Banks, C., Rintala, J.: Anaerobic digestion of autoclaved and untreated food waste. Waste Manage. 34(2), 370–377 (2014)CrossRefGoogle Scholar
  42. Voegeli, Y., Zurbrügg, C.: Decentralised anaerobic digestion of kitchen and market waste in developing countries-‘state of the art’ in south India. Proc. Venice (2008)Google Scholar
  43. Wang, X., Zhao, Y.-C.: A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process. Int. J. Hydrogen Energy 34(1), 245–254 (2009)CrossRefGoogle Scholar
  44. Xiao, L., Deng, Z., Fung, K.Y., Ng, K.M.: Biohydrogen generation from anaerobic digestion of food waste. Int. J. Hydrogen Energy 38(32), 13907–13913 (2013)CrossRefGoogle Scholar
  45. Zhang, C., Xiao, G., Peng, L., Su, H., Tan, T.: The anaerobic co-digestion of food waste and cattle manure. Biores. Technol. 129, 170–176 (2013)CrossRefGoogle Scholar
  46. Zhang, R., El-Mashad, H.M., Hartman, K., Wang, F., Liu, G., Choate, C., Gamble, P.: Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 98(4), 929–935 (2007)CrossRefGoogle Scholar
  47. Zhu, J., Wan, C., Li, Y.: Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresour. Technol. 101(19), 7523–7528 (2010).  https://doi.org/10.1016/j.biortech.2010.04.060CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Process Engineering and Environment, Faculty of Sciences and Techniques of MohammediaHassan II University of CasablancaCasablancaMorocco

Personalised recommendations