Advertisement

CCL4 Signaling in the Tumor Microenvironment

  • Naofumi MukaidaEmail author
  • So-ichiro Sasaki
  • Tomohisa Baba
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1231)

Abstract

CCL4, a CC chemokine, previously known as macrophage inflammatory protein (MIP)-1β, has diverse effects on various types of immune and nonimmune cells by the virtue of its interaction with its specific receptor, CCR5, in collaboration with related but distinct CC chemokines such as CCL3 and CCL5, which can also bind CCR5. Several lines of evidence indicate that CCL4 can promote tumor development and progression by recruiting regulatory T cells and pro-tumorigenic macrophages, and acting on other resident cells present in the tumor microenvironment, such as fibroblasts and endothelial cells, to facilitate their pro-tumorigenic capacities. These observations suggest the potential efficacy of CCR5 antagonists for cancer treatment. On the contrary, under some situations, CCL4 can enhance tumor immunity by recruiting cytolytic lymphocytes and macrophages with phagocytic ability. Thus, presently, the clinical application of CCR5 antagonists warrants more detailed analysis of the role of CCL4 and other CCR5-binding chemokines in the tumor microenvironment.

Keywords

Arrestin CCR5 Chemokine Chemotaxis Cytolytic lymphocyte Endothelial cell Fibroblast Macrophage inflammatory protein Trimeric G protein Human immunodeficiency virus Macrophage Metastasis Myeloid suppressor cells Neutrophils Regulatory T cell 

Notes

Acknowledgment

This work was supported partly by the Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (JSPS) KAKEHI grant number 17K07159.

References

  1. 1.
    Griffith JW, Sokol CL, Luster AD (2014) Chemokines and chemokine receptors: positioning cells for host defense and immunity. Ann Rev Immunol 32:659–702CrossRefGoogle Scholar
  2. 2.
    Miller MC, Mayo KH (2017) Chemokines from a structural perspective. Int J Mol Sci 18:10Google Scholar
  3. 3.
    Mukaida N, Baba T (2012) Chemokines in tumor development and progression. Exp Cell Res 318(2):95–102PubMedCrossRefGoogle Scholar
  4. 4.
    Wolpe SD, Davatelis G, Sherry B, Beutler B, Hesse DG, Nguyen HT et al (1988) Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties. J Exp Med 167(2):570–581PubMedCrossRefGoogle Scholar
  5. 5.
    Sherry B, Tekamp-Olson P, Gallegos C, Bauer D, Davatelis G, Wolpe SD et al (1988) Resolution of the two components of macrophage inflammatory protein 1, and cloning and characterization of one of those components, macrophage inflammatory protein 1 beta. J Exp Med 168(6):2251–2259PubMedCrossRefGoogle Scholar
  6. 6.
    Obaru K, Fukuda M, Maeda S, Shimada KA (1986) cDNA clone used to study mRNA inducible in human tonsillar lymphocytes by a tumor promoter. J Biochem 99(3):885–894PubMedCrossRefGoogle Scholar
  7. 7.
    Lipes MA, Napolitano M, Jeang KT, Chang NT, Leonard WJ (1988) Identification, cloning, and characterization of an immune activation gene. Proc Natl Acad Sci U S A 85(24):9704–9708PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Zipfel PF, Balke J, Irving SG, Kelly K, Siebenlist U (1989) Mitogenic activation of human T cells induces two closely related genes which share structural similarities with a new family of secreted factors. J Immunol 142(5):1582–1590PubMedGoogle Scholar
  9. 9.
    Chang HC, Reinherz EL (1989) Isolation and characterization of a cDNA encoding a putative cytokine which is induced by stimulation via the CD2 structure on human T lymphocytes. Eur J Immunol 19(6):1045–1051PubMedCrossRefGoogle Scholar
  10. 10.
    Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ et al (2014) International union of basic and clinical pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 66(1):1–79PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Irving SG, Zipfel PF, Balke J, McBride OW, Morton CC, Burd PR et al (1990) Two inflammatory mediator cytokine genes are closely linked and variably amplified on chromosome 17q. Nucleic Acids Res 18(11):3261–3270PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Colobran R, Adreani P, Ashhab Y, Llano A, Este JA, Dominguez O et al (2005) Multiple products derived from two CCL4 loci: high incidence of a new polymorphism in HIV+ patients. J Immunol 174(9):5655–5664PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Townson JR, Barcellos LF, Nibbs RJ (2002) Gene copy number regulates the production of the human chemokine CCL3-L1. Eur J Immunol 32(10):3016–3026PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Lodi PJ, Garrett DS, Kuszewski J, Tsang ML, Weatherbee JA, Leonard WJ et al (1994) High-resolution solution structure of the beta chemokine hMIP-1 beta by multidimensional NMR. Science 263(5154):1762–1767PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ren M, Guo Q, Guo L, Lenz M, Qian F, Koenen RR et al (2010) Polymerization of MIP-1 chemokine (CCL3 and CCL4) and clearance of MIP-1 by insulin-degrading enzyme. Embo J 29(23):3952–3966PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lortat-Jacob H, Grosdidier A, Imberty A (2002) Structural diversity of heparan sulfate binding domains in chemokines. Proc Natl Acad Sci U S A 99(3):1229–1234PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Koopmann W, Ediriwickrema C, Krangel MS (1999) Structure and function of the glycosaminoglycan binding site of chemokine macrophage-inflammatory protein-1 beta. J Immunol 163(4):2120–2127PubMedPubMedCentralGoogle Scholar
  18. 18.
    Menten P, Wuyts A, Van Damme J (2002) Macrophage inflammatory protein-1. Cytokine Growth Factor Rev 13(6):455–481PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ziegler SF, Tough TW, Franklin TL, Armitage RJ, Alderson MR (1991) Induction of macrophage inflammatory protein-1 beta gene expression in human monocytes by lipopolysaccharide and IL-7. J Immunol 147(7):2234–2239PubMedPubMedCentralGoogle Scholar
  20. 20.
    Oliva A, Kinter AL, Vaccarezza M, Rubbert A, Catanzaro A, Moir S et al (1998) Natural killer cells from human immunodeficiency virus (HIV)-infected individuals are an important source of CC-chemokines and suppress HIV-1 entry and replication in vitro. J Clin Invest 102(1):223–231PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P (1995) Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 270(5243):1811–1815PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Zaitseva M, King LR, Manischewitz J, Dougan M, Stevan L, Golding H et al (2001) Human peripheral blood T cells, monocytes, and macrophages secrete macrophage inflammatory proteins 1alpha and 1beta following stimulation with heat-inactivated Brucella abortus. Infect Immun 69(6):3817–3826PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Krzysiek R, Lefevre EA, Zou W, Foussat A, Bernard J, Portier A et al (1999) Antigen receptor engagement selectively induces macrophage inflammatory protein-1 alpha (MIP-1 alpha) and MIP-1 beta chemokine production in human B cells. J Immunol 162(8):4455–4463PubMedPubMedCentralGoogle Scholar
  24. 24.
    Sallusto F, Palermo B, Lenig D, Miettinen M, Matikainen S, Julkunen I et al (1999) Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur J Immunol 29(5):1617–1625PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Lapinet JA, Scapini P, Calzetti F, Perez O, Cassatella MA (2000) Gene expression and production of tumor necrosis factor alpha, interleukin-1beta (IL-1beta), IL-8, macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, and gamma interferon-inducible protein 10 by human neutrophils stimulated with group B meningococcal outer membrane vesicles. Infect Immun 68(12):6917–6923PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Lukacs NW, Kunkel SL, Allen R, Evanoff HL, Shaklee CL, Sherman JS et al (1995) Stimulus and cell-specific expression of C-X-C and C-C chemokines by pulmonary stromal cell populations. Am J Physiol 268(5 Pt 1):L856–L861PubMedPubMedCentralGoogle Scholar
  27. 27.
    Shukaliak JA, Dorovini-Zis K (2000) Expression of the beta-chemokines RANTES and MIP-1 beta by human brain microvessel endothelial cells in primary culture. J Neuropathol Exp Neurol 59(5):339–352PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Samson M, Labbe O, Mollereau C, Vassart G, Parmentier M (1996) Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochemistry 35(11):3362–3367PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Neote K, DiGregorio D, Mak JY, Horuk R, Schall TJ (1993) Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell 72(3):415–425PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R et al (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273(5283):1856–1862PubMedCrossRefGoogle Scholar
  31. 31.
    Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM et al (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382(6593):722–725PubMedCrossRefGoogle Scholar
  32. 32.
    Scurci I, Martins E, Hartley O (2018) CCR5: Established paradigms and new frontiers for a ‘celebrity’ chemokine receptor. Cytokine 109:81–93PubMedCrossRefGoogle Scholar
  33. 33.
    Oppermann M, Mack M, Proudfoot AE, Olbrich H (1999) Differential effects of CC chemokines on CC chemokine receptor 5 (CCR5) phosphorylation and identification of phosphorylation sites on the CCR5 carboxyl terminus. J Biol Chem 274(13):8875–8885PubMedCrossRefGoogle Scholar
  34. 34.
    Shukla AK, Xiao K, Lefkowitz RJ (2011) Emerging paradigms of beta-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem Sci 36(9):457–469PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Escola JM, Kuenzi G, Gaertner H, Foti M, Hartley O (2010) CC chemokine receptor 5 (CCR5) desensitization: cycling receptors accumulate in the trans-Golgi network. J Biol Chem 285(53):41772–41780PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Rottman JB, Ganley KP, Williams K, Wu L, Mackay CR, Ringler DJ (1997) Cellular localization of the chemokine receptor CCR5. Correlation to cellular targets of HIV-1 infection. Am J Pathol 151(5):1341–1351PubMedPubMedCentralGoogle Scholar
  37. 37.
    Sallusto F, Lenig D, Mackay CR, Lanzavecchia A (1998) Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 187(6):875–883PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Schlecker E, Stojanovic A, Eisen C, Quack C, Falk CS, Umansky V et al (2012) Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth. J Immunol 189(12):5602–5611PubMedCrossRefGoogle Scholar
  39. 39.
    Taub DD, Sayers TJ, Carter CR, Ortaldo JR (1995) Alpha and beta chemokines induce NK cell migration and enhance NK-mediated cytolysis. J Immunol 155(8):3877–3888PubMedGoogle Scholar
  40. 40.
    Taub DD, Conlon K, Lloyd AR, Oppenheim JJ, Kelvin DJ (1993) Preferential migration of activated CD4+ and CD8+ T cells in response to MIP-1 alpha and MIP-1 beta. Science 260(5106):355–358PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Tanaka Y, Adams DH, Hubscher S, Hirano H, Siebenlist U, Shaw S (1993) T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1 beta. Nature 361(6407):79–82PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Sozzani S, Allavena P, D’Amico G, Luini W, Bianchi G, Kataura M et al (1998) Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol 161(3):1083–1086PubMedPubMedCentralGoogle Scholar
  43. 43.
    Uguccioni M, D’Apuzzo M, Loetscher M, Dewald B, Baggiolini M (1995) Actions of the chemotactic cytokines MCP-1, MCP-2, MCP-3, RANTES, MIP-1 alpha and MIP-1 beta on human monocytes. Eur J Immunol 25(1):64–68PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Broxmeyer HE, Sherry B, Cooper S, Lu L, Maze R, Beckmann MP et al (1993) Comparative analysis of the human macrophage inflammatory protein family of cytokines (chemokines) on proliferation of human myeloid progenitor cells. Interacting effects involving suppression, synergistic suppression, and blocking of suppression. J Immunol 150(8 Pt 1):3448–3458PubMedPubMedCentralGoogle Scholar
  45. 45.
    Schecter AD, Calderon TM, Berman AB, McManus CM, Fallon JT, Rossikhina M et al (2000) Human vascular smooth muscle cells possess functional CCR5. J Biol Chem 275(8):5466–5471PubMedCrossRefGoogle Scholar
  46. 46.
    Berger O, Gan X, Gujuluva C, Burns AR, Sulur G, Stins M et al (1999) CXC and CC chemokine receptors on coronary and brain endothelia. Mol Med 5(12):795–805PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Maguire JJ, Jones KL, Kuc RE, Clarke MC, Bennett MR, Davenport AP (2014) The CCR5 chemokine receptor mediates vasoconstriction and stimulates intimal hyperplasia in human vessels in vitro. Cardiovasc Res 101(3):513–521PubMedCrossRefGoogle Scholar
  48. 48.
    Sasaki S, Baba T, Nishimura T, Hayakawa Y, Hashimoto S, Gotoh N et al (2016) Essential roles of the interaction between cancer cell-derived chemokine, CCL4, and intra-bone CCR5-expressing fibroblasts in breast cancer bone metastasis. Cancer Lett 378(1):23–32PubMedCrossRefGoogle Scholar
  49. 49.
    Wang B, Chou YE, Lien MY, Su CM, Yang SF, Tang CH (2017) Impacts of CCL4 gene polymorphisms on hepatocellular carcinoma susceptibility and development. Int J Med Sci 14(9):880–884PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lien MY, Lin CW, Tsai HC, Chen YT, Tsai MH, Hua CH et al (2017) Impact of CCL4 gene polymorphisms and environmental factors on oral cancer development and clinical characteristics. Oncotarget 8(19):31424–31434PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hu GN, Tzeng HE, Chen PC, Wang CQ, Zhao YM, Wang Y et al (2018) Correlation between CCL4 gene polymorphisms and clinical aspects of breast cancer. Int J Med Sci 15(11):1179–1186PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Erreni M, Bianchi P, Laghi L, Mirolo M, Fabbri M, Locati M et al (2009) Expression of chemokines and chemokine receptors in human colon cancer. Methods Enzymol 460:105–121PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Nishikawa G, Kawada K, Nakagawa J, Toda K, Ogawa R, Inamoto S et al (2019) Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression via CCR5. Cell Death Dis 10(4):264PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    De la Fuente Lopez M, Landskron G, Parada D, Dubois-Camacho K, Simian D, Martinez M et al (2018) The relationship between chemokines CCL2, CCL3, and CCL4 with the tumor microenvironment and tumor-associated macrophage markers in colorectal cancer. Tumour Biol 40(11):1010428318810059PubMedPubMedCentralGoogle Scholar
  55. 55.
    Fujimoto H, Saito Y, Ohuchida K, Kawakami E, Fujiki S, Watanabe T et al (2018) Deregulated mucosal immune surveillance through gut-associated regulatory T cells and PD-1(+) T cells in human colorectal cancer. J Immunol 200(9):3291–3303PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Xue J, Yu X, Xue L, Ge X, Zhao W, Peng W (2019) Intrinsic beta-catenin signaling suppresses CD8(+) T-cell infiltration in colorectal cancer. Biomed Pharmacother 108921:115Google Scholar
  57. 57.
    Vayrynen JP, Kantola T, Vayrynen SA, Klintrup K, Bloigu R, Karhu T et al (2016) The relationships between serum cytokine levels and tumor infiltrating immune cells and their clinical significance in colorectal cancer. Int J Cancer 139(1):112–121PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Li L, Liu YD, Zhan YT, Zhu YH, Li Y, Xie D et al (2018) High levels of CCL2 or CCL4 in the tumor microenvironment predict unfavorable survival in lung adenocarcinoma. Thoracic Cancer 9(7):775–784PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Chen S, Jiao J, Jiang D, Wan Z, Li L, Li K et al (2015) T-box transcription factor Brachyury in lung cancer cells inhibits macrophage infiltration by suppressing CCL2 and CCL4 chemokines. Tumour Biol 36(8):5881–5890PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Scaiewicz V, Nahmias A, Chung RT, Mueller T, Tirosh B, Shibolet OCCAAT (2013) enhancer-binding protein homologous (CHOP) protein promotes carcinogenesis in the DEN-induced hepatocellular carcinoma model. PLoS One 8(12):e81065PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Trellakis S, Bruderek K, Dumitru CA, Gholaman H, Gu X, Bankfalvi A et al (2011) Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. Int J Cancer 129(9):2183–2193PubMedCrossRefGoogle Scholar
  62. 62.
    Wang Y, Liu T, Yang N, Xu S, Li X, Wang D (2016) Hypoxia and macrophages promote glioblastoma invasion by the CCL4-CCR5 axis. Oncol Rep 36(6):3522–3528PubMedCrossRefGoogle Scholar
  63. 63.
    Xiao L, Harrell JC, Perou CM, Dudley AC (2014) Identification of a stable molecular signature in mammary tumor endothelial cells that persists in vitro. Angiogenesis 17(3):511–518PubMedCrossRefGoogle Scholar
  64. 64.
    Pitarresi JR, Liu X, Sharma SM, Cuitino MC, Kladney RD, Mace TA et al (2016) Stromal ETS2 regulates chemokine production and immune cell recruitment during acinar-to-ductal metaplasia. Neoplasia 18(9):541–552PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Lien MY, Tsai HC, Chang AC, Tsai MH, Hua CH, Wang SW et al (2018) Chemokine CCL4 induces vascular endothelial growth factor C expression and lymphangiogenesis by miR-195-3p in oral squamous cell carcinoma. Front Immunol 9:412PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Pervaiz A, Zepp M, Mahmood S, Ali DM, Berger MR, Adwan H (2019) CCR5 blockage by maraviroc: a potential therapeutic option for metastatic breast cancer. Cellular Oncol 42(1):93–106CrossRefGoogle Scholar
  67. 67.
    Liu JY, Li F, Wang LP, Chen XF, Wang D, Cao L et al (2015) CTL- vs Treg lymphocyte-attracting chemokines, CCL4 and CCL20, are strong reciprocal predictive markers for survival of patients with oesophageal squamous cell carcinoma. Br J Cancer 113(5):747–755PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Pallasch CP, Leskov I, Braun CJ, Vorholt D, Drake A, Soto-Feliciano YM et al (2014) Sensitizing protective tumor microenvironments to antibody-mediated therapy. Cell 156(3):590–602PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Sektioglu IM, Carretero R, Bulbuc N, Bald T, Tuting T, Rudensky AY et al (2017) Basophils promote tumor rejection via chemotaxis and infiltration of CD8+ T cells. Cancer Res 77(2):291–302PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Naofumi Mukaida
    • 1
    Email author
  • So-ichiro Sasaki
    • 1
  • Tomohisa Baba
    • 1
  1. 1.Division of Molecular Bioregulation, Cancer Research InstituteKanazawa UniversityKanazawaJapan

Personalised recommendations