Multi-harmonic Analysis Using Magnitude-Squared Coherence and Its Application to Detection of Auditory Steady-State Responses

  • Abdon Francisco Aureliano NettoEmail author
  • Tiago Zanotelli
  • Leonardo Bonato Felix
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1068)


The detection of auditory evoked brain responses is an important task in hearing science, especially in the role of investigation of hearing thresholds. Objective Response Detection (ORD) techniques aim to identify the presence of evoked potentials based purely on statistical principles that perform an automatic hypothesis test in the frequency domain and the Magnitude-Squared Coherence (MSC) is a well-known and very efficient uni-variate ORD technique. The use of q-sample tests, which, in addition to the fundamental frequency, also includes higher harmonics in the detection has shown trends to better detection of ASSRs performance. The database used in this work contains ASSRs that were collected when evoked by amplitude modulation of pure tones delivered binaurally at 70 dB SPL to 24 volunteers with normal hearing thresholds. This paper analyses the detection of response using a multi-harmonic approach combining the fundamental frequencies, 84 and 88 Hz, and its six next harmonic frequencies. A detection threshold was estimated using a Monte Carlo simulation. Both the detection rate and area bellow the detection curve increased using q-MSC techniques when compared to the one-channel and one-harmonic technique. The best results trends to be using a mean value (mean q-MSC) up to the third harmonic frequency, with an increase of 7.4% of detection rate mean, statistically proven with McNemar test, and the mean area bellows the detection curve increased 24.37%, statistically proven with t paired test, for the 14 channels compared.


Magnitude-Squared Coherence q-Sample Multi-harmonic Objective Response Detection 


  1. 1.
    Cebulla, M., Stürzebecher, E., Elberling, C.: Objective detection of auditory steady-state responses: comparison of one-sample and q-sample tests. J. Am. Acad. Audiol. 17(2), 93–103 (2006)CrossRefGoogle Scholar
  2. 2.
    Cummins, T.D., Finnigan, S.: Theta power is reduced in healthy cognitive aging. Int. J. Psychophysiol. 66(1), 10–17 (2007)CrossRefGoogle Scholar
  3. 3.
    Dobie, R.A., Wilson, M.J.: Analysis of auditory evoked potentials by magnitude-squared coherence. Ear Hear. 10(1), 2–13 (1989)CrossRefGoogle Scholar
  4. 4.
    Dobie, R.A., Wilson, M.J.: Optimal (wiener) digital filtering of auditory evoked potentials: use of coherence estimates. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect. 77(3), 205–213 (1990)CrossRefGoogle Scholar
  5. 5.
    Dobie, R.A., Wilson, M.J.: Objective response detection in the frequency domain. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect. 88(6), 516–524 (1993)CrossRefGoogle Scholar
  6. 6.
    Dobie, R.A., Wilson, M.J.: Phase weighting: a method to improve objective detection of steady-state evoked potentials. Hear. Res. 79(1–2), 94–98 (1994)CrossRefGoogle Scholar
  7. 7.
    Dobie, R.A., Wilson, M.J.: A comparison of t test, f test, and coherence methods of detecting steady-state auditory-evoked potentials, distortion-product otoacoustic emissions, or other sinusoids. J. Acoust. Soc. Am. 100(4), 2236–2246 (1996)CrossRefGoogle Scholar
  8. 8.
    Felix, L.B., Antunes, F., da Silva Carvalho, J.A., dos Santos Barroso, M.F., et al.: Comparison of univariate and multivariate magnitude-squared coherences in the detection of human 40-hz auditory steady-state evoked responses. Biomed. Signal Process. Control 40, 234–239 (2018)CrossRefGoogle Scholar
  9. 9.
    Felix, L.B., Infantosi, A.F.C., Yehia, H.C., et al.: Multivariate objective response detectors (mord): statistical tools for multichannel EEG analysis during rhythmic stimulation. Ann. Biomed. Eng. 35(3), 443–452 (2007)CrossRefGoogle Scholar
  10. 10.
    Felix, L.B., Rocha, P.F.F., Mendes, E.M.A.M., et al.: Multivariate approach for estimating the local spectral f-test and its application to the EEG during photic stimulation. Comput. Methods Programs Biomed. 162, 87–91 (2018)CrossRefGoogle Scholar
  11. 11.
    Felix, L.B., de Sa, A.M.F.M., Mendes, E.M.A.M., Moraes, M.F.D.: Statistical aspects concerning signal coherence applied to randomly modulated periodic signals. IEEE Signal Process. Lett. 13(2), 104–107 (2006)CrossRefGoogle Scholar
  12. 12.
    Felix, L.B., de Souza Ranaudo, F., Netto, A.D., et al.: A spatial approach of magnitude-squared coherence applied to selective attention detection. J. Neurosci. Methods 229, 28–32 (2014)CrossRefGoogle Scholar
  13. 13.
    Galambos, R., Makeig, S., Stapells, D.: The phase aggregation of steady state (40 hz) event related potentials: its use in estimating hearing thresholds. In: XVII International Congress of Audiology (1984)Google Scholar
  14. 14.
    Hotelling, H.: The generalization of student’s ratio. Ann. Math. Statist. 2(3), 360–378 (1931). Scholar
  15. 15.
    John, M.S., Dimitrijevic, A., Picton, T.W.: Weighted averaging of steady-state responses. Clin. Neurophysiol. 112(3), 555–562 (2001)CrossRefGoogle Scholar
  16. 16.
    Mee, R.W., Chua, T.C.: Regression toward the mean and the paired sample t test. Am. Stat. 45(1), 39–42 (1991)Google Scholar
  17. 17.
    Paulraj, M., Subramaniam, K., Yaccob, S.B., Adom, A.H.B., Hema, C.: Auditory evoked potential response and hearing loss: a review. Open Biomed. Eng. J. 9, 17 (2015)CrossRefGoogle Scholar
  18. 18.
    Picton, T.W., John, M.S., Dimitrijevic, A., Purcell, D.: Human auditory steady-state responses: respuestas auditivas de estado estable en humanos. Int. J. Audiol. 42(4), 177–219 (2003)CrossRefGoogle Scholar
  19. 19.
    Picton, T.W., Vajsar, J., Rodriguez, R., Campbell, K.B.: Reliability estimates for steady-state evoked potentials. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect. 68(2), 119–131 (1987)CrossRefGoogle Scholar
  20. 20.
    Regan, D.: Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine (1989)Google Scholar
  21. 21.
    de Resende, L.M., et al.: Auditory steady-state responses in school-aged children: a pilot study. J. Neuroeng. Rehabil. 12(1), 13 (2015)CrossRefGoogle Scholar
  22. 22.
    de Sá, A.M.F.M., Felix, L.B.: Improving the detection of evoked responses to periodic stimulation by using multiple coherenceapplication to eeg during photic stimulation. Med. Eng. Phys. 24(4), 245–252 (2002)CrossRefGoogle Scholar
  23. 23.
    de Sá, A.M.F.M., Ferreira, D.D., Dias, E.W., Mendes, E.M., Felix, L.B.: Coherence estimate between a random and a periodic signal: bias, variance, analytical critical values, and normalizing transforms. J. Franklin Inst. 346(9), 841–853 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Scharbrough, F., Chatrian, G., Lesser, R., Luders, H., Nuwer, M., Picton, T.: Guidelines for standard electrode position nomenclature. Am. EEG Soc. (1990)Google Scholar
  25. 25.
    Siegel, S.: Nonparametric statistics for the behavioral sciences (1956)Google Scholar
  26. 26.
    da Silva Eloi, B.F., Antunes, F., Felix, L.B.: Improving the detection of auditory steady-state responses near 80 hz using multiple magnitude-squared coherence and multichannel electroencephalogram. Biomed. Signal Process. Control 42, 158–161 (2018)CrossRefGoogle Scholar
  27. 27.
    Stapells, D.R., Makeig, S., Galambos, R.: Auditory steady-state responses: threshold prediction using phase coherence. Electroencephalogr. Clin. Neurophysiol. 67(3), 260–270 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graduate Program in Electrical EngineeringFederal University of Sao Joao del-ReiSao Joao del-ReiBrazil
  2. 2.NIAS, Department of Electrical EngineeringFederal University of VicosaVicosaBrazil
  3. 3.Graduate Program in Electrical EngineeringFederal University of Minas GeraisBelo HorizonteBrazil
  4. 4.Department of Electrical EngineeringFederal Institute of Espirito SantoSao MateusBrazil

Personalised recommendations