Advertisement

Eye-Tracking Data Analysis During Cognitive Task

  • Rafael Nobre OrsiEmail author
  • Davi Araujo Dal Fabbro
  • Carlos Eduardo Thomaz
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1068)

Abstract

This work investigates the use of eye-tracking as a method for analysis of mental effort in cognitive tasks. From a trivial task of counting objects, the proposal of this work is to present a study on the reactions of the nervous system through visual stimuli to the cognitive system. Our experimental results show that there is a relationship between the cognitive load and pupillary diameter variation, reinforcing the idea that the pupil is a sensitive indicator of mental effort. We believe that pupil diameter measurement can be used as a performance descriptor in cognitive tasks.

Keywords

Mental effort Eye-tracking Cognitive counting 

Notes

Acknowledgment

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

References

  1. 1.
    Ahern, S., Beatty, J.: Pupillary responses during information processing vary with scholastic aptitude test scores. Science 205(4412), 1289–1292 (1979)CrossRefGoogle Scholar
  2. 2.
    Ales, F., Giromini, L., Zennaro, A.: Complexity and cognitive engagement in the Rorschach task: an eye-tracking study. J. Pers. Assess. 1–13 (2019) Google Scholar
  3. 3.
    Alexandridis, E., Telger, T.: The Pupil. Springer, New York (1985).  https://doi.org/10.1007/978-1-4612-5086-9CrossRefGoogle Scholar
  4. 4.
    Beatty, J.: Phasic not tonic pupillary responses vary with auditory vigilance performance. Psychophysiology 19(2), 167–172 (1982)CrossRefGoogle Scholar
  5. 5.
    Beatty, J.: Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychol. Bull. 91(2), 276 (1982)CrossRefGoogle Scholar
  6. 6.
    Beatty, J., Kahneman, D.: Pupillary changes in two memory tasks. Psychon. Sci. 5(10), 371–372 (1966)CrossRefGoogle Scholar
  7. 7.
    Beatty, J., Legewie, H.: Biofeedback and behavior: introduction to the proceedings. In: Beatty, J., Legewie, H. (eds.) Biofeedback and Behavior. NATOCS, vol. 2, pp. 1–5. Springer, Boston (1977).  https://doi.org/10.1007/978-1-4684-2526-0_1CrossRefGoogle Scholar
  8. 8.
    Bodala, I.P., Li, J., Thakor, N.V., Al-Nashash, H.: Eeg and eye tracking demonstrate vigilance enhancement with challenge integration. Front. Hum. Neurosci. 10, 273 (2016)CrossRefGoogle Scholar
  9. 9.
    Cavanagh, J.F., Wiecki, T.V., Kochar, A., Frank, M.J.: Eye tracking and pupillometry are indicators of dissociable latent decision processes. J. Exp. Psychol. Gen. 143(4), 1476 (2014)CrossRefGoogle Scholar
  10. 10.
    Duchowski, A.T.: Eye Tracking Methodology. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57883-5CrossRefzbMATHGoogle Scholar
  11. 11.
    Eysenck, M.W., Keane, M.T.: Manual de Psicologia Cognitiva, 7th edn. Artmed Editora, Porto Alegre (2017)Google Scholar
  12. 12.
    Fabbro, D.A.D., Thomaz, C.E.: Contagem e Cognição Numérica: experimentos com eye-tracking. In: Proceedings of the 4th Symposium on Knowledge Discovery, Mining and Learning, Recife, Brazil, pp. 186–193 (2016)Google Scholar
  13. 13.
    Faraway, J.J.: Practical regression and ANOVA using R (2002)Google Scholar
  14. 14.
    Ganor-Stern, D., Weiss, N.: Tracking practice effects in computation estimation. Psychol. Res. 80(3), 434–448 (2016)CrossRefGoogle Scholar
  15. 15.
    Gross, J.J.: Emotion regulation. In: Handbook of Emotions, vol. 3, pp. 497–513 (2008)Google Scholar
  16. 16.
    Hayhoe, M., Ballard, D.: Eye movements in natural behavior. Trends Cogn. Sci. 9(4), 188–194 (2005)CrossRefGoogle Scholar
  17. 17.
    Hess, E.H.: Attitude and pupil size. Sci. Am. 212, 46–55 (1965)CrossRefGoogle Scholar
  18. 18.
    Hess, E.H.: The role of pupil size in communication. Sci. Am. 233(5), 110–119 (1975)CrossRefGoogle Scholar
  19. 19.
    Hess, E.H., Polt, J.M.: Pupil size as related to interest value of visual stimuli. Science 132(3423), 349–350 (1960)CrossRefGoogle Scholar
  20. 20.
    Hess, E.H., Polt, J.M.: Pupil size in relation to mental activity during simple problem-solving. Science 143(3611), 1190–1192 (1964)CrossRefGoogle Scholar
  21. 21.
    Hess, E.H., Polt, J.M.: Reply to “Critique of a pupillary response experiment” by Roger P. Dooley and Donald J. Lehr. Percept. Mot. Skills 25(2), 659–660 (1967)CrossRefGoogle Scholar
  22. 22.
    Kahneman, D.: Attention and Effort, vol. 1063. Prentice-Hall, Upper Saddle River (1973)Google Scholar
  23. 23.
    Kahneman, D.: Thinking, Fast and Slow. Farrar Straus and Giroux, New York (2011)Google Scholar
  24. 24.
    Kahneman, D., Beatty, J.: Pupil diameter and load on memory. Science 154(3756), 1583–1585 (1966)CrossRefGoogle Scholar
  25. 25.
    Kahneman, D., Onuska, L., Wolman, R.E.: Effects of grouping on the pupillary response in a short-term memory task. Q. J. Exp. Psychol. 20(3), 309–311 (1968)CrossRefGoogle Scholar
  26. 26.
    Kahneman, D., Peavler, W.S.: Incentive effects and pupillary changes in association learning. J. Exp. Psychol. 79(2p1), 312 (1969)CrossRefGoogle Scholar
  27. 27.
    Kahneman, D., Tursky, B., Shapiro, D., Crider, A.: Pupillary, heart rate, and skin resistance changes during a mental task. J. Exp. Psychol. 79(1p1), 164 (1969)CrossRefGoogle Scholar
  28. 28.
    Kahneman, D., Wright, P.: Changes of pupil size and rehearsal strategies in a short-term memory task. Q. J. Exp. Psychol. 23(2), 187–196 (1971)CrossRefGoogle Scholar
  29. 29.
    Korbach, A., Brünken, R., Park, B.: Differentiating different types of cognitive load: a comparison of different measures. Educ. Psychol. Rev. 30, 1–27 (2017)Google Scholar
  30. 30.
    Marieb, E.N., Wilhelm, P.B., Mallat, J.: Anatomia Humana, 7th edn. Pearson Education do Brasil, São Paulo (2014)Google Scholar
  31. 31.
    Marshall, S.P.: Method and apparatus for eye tracking and monitoring pupil dilation to evaluate cognitive activity. US Patent 6,090,051, 18 July 2000Google Scholar
  32. 32.
    Orsi, R.N., Thomaz, C.E.: Classificação automática do desempenho humano em tarefas cognitivas por meio da mensuração do diâmetro pupilar. In: XXII Congresso Brasileiro de Automática - Sistemas Inteligentes. Congresso Brasileiro de Automática, CBA2018, João Pessoa - PB, Brasil (2018)Google Scholar
  33. 33.
    Pedrotti, M., et al.: Automatic stress classification with pupil diameter analysis. Int. J. Hum.-Comput. Inter. 30(3), 220–236 (2014)CrossRefGoogle Scholar
  34. 34.
    Pinheiro, J.: Estatística Básica. Em Portuguese do Brasil, Elsevier Acadêmico (2009)Google Scholar
  35. 35.
    Silva, L.: Um estudo sobre mapeamento cerebral e análise de movimentos oculares em jogadores de xadrez. Master’s thesis, Centro Universitário FEI, São Bernardo do Campo - SP, Brazil (2017), 65.f. Dissertação (Mestrado em Engenharia Elétrica) - Centro Universitário FEI, São Bernardo do Campo (2017)Google Scholar
  36. 36.
    Sirois, S., Brisson, J.: Pupillometry. Wiley Interdisc. Rev. Cogn. Sci. 5(6), 679–692 (2014)CrossRefGoogle Scholar
  37. 37.
    Souza, G.D.S., Lacerda, E.M.D.C.B., Silveira, V.D.A., Araújo, C.D.S., Silveira, L.C.D.L.: A visão através dos contrastes. estudos avançados 27(77), 45–60 (2013)Google Scholar
  38. 38.
    Tobii: Accuracy and precision test method for remote eye trackers. Tobii Technology, 2.1.1 edn. (2011)Google Scholar
  39. 39.
    Tobii Technology: User Manual - Tobii Studio, 3.2 edn. (2012). rev AGoogle Scholar
  40. 40.
    Tobii Technology: Accuracy and precision test report, 2.1.7 edn. (2013). rev ABGoogle Scholar
  41. 41.
    Van Gerven, P.W., Paas, F., Van Merriënboer, J.J., Schmidt, H.G.: Memory load and the cognitive pupillary response in aging. Psychophysiology 41(2), 167–174 (2004)CrossRefGoogle Scholar
  42. 42.
    Volke, H.J., Dettmar, P., Richter, P., Rudolf, M., Buhss, U.: On-coupling and off-coupling of neocortical areas in chess experts and novices as revealed by evoked EEG coherence measures and factor-based topological analysis-a pilot study. J. Psychophysiol. 16(1), 23 (2002)CrossRefGoogle Scholar
  43. 43.
    Warren, H.: The reaction time of counting. Psychol. Rev. 4, 569 (1897)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centro Univesitario FEISao Bernardo do CampoBrazil

Personalised recommendations