Advertisement

Epileptiform Spike Detection in Electroencephalographic Recordings of Epilepsy Animal Models Using Variable Threshold

  • Sofia M. A. F. Rodrigues
  • Jasiara C. de Oliveira
  • Vinícius Rosa CotaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1068)

Abstract

Epilepsy is a public health issue worldwide, given its biological, social, and economic impacts. Moreover, and particularly important, a significant portion of patients is refractory to conventional treatments and novel treatments are in need. By this token, the use and development of computational tools for the detection of epileptiform spikes, together with its feature extraction, have central significance, since these are recognized electrographic signatures of the disorder. In the present work, a detection method of such paroxysms in electroencephalographic recordings is proposed. With low mathematical complexity, the algorithm was developed for fast spike detection by using amplitude and time thresholds - both of them adjustable by the user - and applying a moving and variable amplitude threshold, calculated in each temporal window of analysis. This was done in order to provide greater adaptability to the algorithm and cope with the variable nature of epileptiform spikes. The algorithm was applied to recordings of animals submitted to acute seizures induced by a chemoconvulsant and results were compared to the visual detection of a specialist. Results showed the proposed algorithm can perform at the same level of other previously described approaches, considering the highly variable amplitude of spikes.

Keywords

Epileptiform spike Ictal detection Electroencephalographic recordings Animal models Epilepsy ROC curve 

References

  1. 1.
    Epidemiology, S.N.: The complexities of epilepsy. Nature 511, S2–S3 (2014)CrossRefGoogle Scholar
  2. 2.
    Birbeck, G.L.: Epilepsy care in developing countries: part I of II. Epilepsy Curr. 10(4), 75–79 (2010)CrossRefGoogle Scholar
  3. 3.
    Fisher, R.S., van Emde Boas, W., Blume, W., Elger, C., Genton, P., Lee, P.: Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46, 470–472 (2005)CrossRefGoogle Scholar
  4. 4.
    Penfield, W., Jasper, H.: Epilepsy and the functional anatomy of the human brain. Little Brown, Boston (1954)CrossRefGoogle Scholar
  5. 5.
    Cota, V.R., Drabowski, B.M.B., de Oliveira, J.C., Moraes, M.F.D.: The epileptic amygdala: toward the development of a neural prosthesis by temporally coded electrical stimulation. J. Neurosci. Res. 94(6), 463–485 (2016)CrossRefGoogle Scholar
  6. 6.
    Niedermeyer, E.: Epileptic seizure disorders. In: Niedermeyer, E., Lopes Da Silva, F. (eds.) Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th Edn. Lippincott Williams and Wilkins, Philadelphia (2005)Google Scholar
  7. 7.
    Bromfield, E.B., Cavazos, J.E., Sirven, J.I.: An Introduction to Epilepsy (2006)Google Scholar
  8. 8.
    Wilson, S.B., Emerson, R.: Spike detection: a review and comparison of algorithms. Clin. Neurophysiol. 113(12), 1873–1881 (2002)CrossRefGoogle Scholar
  9. 9.
    Gotman, J., Gloor, P.: Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG. Electroencephalogr. Clin. Neurophysiol. 41(5), 513–529 (1976)CrossRefGoogle Scholar
  10. 10.
    Medeiros, D.C., et al.: Temporal rearrangement of pre-ictal PTZ Induced spike discharges by low frequency electrical stimulation to the amygdaloid complex. Brain Stimul. 7(2), 170–178 (2014)CrossRefGoogle Scholar
  11. 11.
    Le Douget, J.E., Fouad, A., Filali, M.M., Pyrzowski, J., Le Van Quyen, M.: Surface and intracranial EEG spike detection based on discrete wavelet decomposition and random forest classification. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 475–478 (2017)Google Scholar
  12. 12.
    Scheuer, M.L., Bagic, A., Wilson, S.B.: Spike detection: inter-reader agreement and a statistical Turing test on a large data set. Clin. Neurophysiol. 128(1), 243–250 (2017)CrossRefGoogle Scholar
  13. 13.
    Anh-Dao, N.T., Linh-Trung, N., Van Nguyen, L., Tran-Duc, T., Boashash, B.: A multistage system for automatic detection of epileptic spikes. REV J. Electron. Commun. 8(1–2), 1–13 (2018)Google Scholar
  14. 14.
    El-Samie, F.E.A., Alotaiby, T.N., Khalid, M.I., Alshebeili, S.A., Aldosari, S.A.: A review of EEG and MEG epileptic spike detection algorithms. IEEE Access 6, 60673–60688 (2018)CrossRefGoogle Scholar
  15. 15.
    Gersner, R., Ekstein, D., Dhamne, S.C., Schachter, S.C., Rotenberg, A.: Huperzine A prophylaxis against pentylenetetrazole-induced seizures in rats is associated with increased cortical inhibition. Epilepsy Res. 117, 97–103 (2015)CrossRefGoogle Scholar
  16. 16.
    Jiao, J., Harreby, K.R., Sevcencu, C., Jensen, W.: Optimal vagus nerve stimulation frequency for suppression of spike-and-wave seizures in rats. Artif. Organs 40(6), E120–E127 (2016)CrossRefGoogle Scholar
  17. 17.
    Santos-Valencia, F., Almazán-Alvarado, S., Rubio-Luviano, A., Valdés-Cruz, A., Magdaleno-Madrigal, V.M., Martinez-Vargas, D.: Temporally irregular electrical stimulation to the epileptogenic focus delays epileptogenesis in rats. Brain Stimulation (2019)Google Scholar
  18. 18.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Maccione, A., Gandolfo, M., Massobrio, P., Novellino, A., Martinoia, S., Chiappalone, M.: A novel algorithm for precise identification of spikes in extracellularly recorded neuronal signals. J. Neurosci. Methods 177(1), 241–249 (2009)CrossRefGoogle Scholar
  20. 20.
    French, J.A.: Refractory epilepsy: clinical overview. Epilepsia 48, 3–7 (2007)CrossRefGoogle Scholar
  21. 21.
    Spencer, S.S.: When should temporal-lobe epilepsy be treated surgically? Lancet Neurol. 1(6), 375–382 (2002)CrossRefGoogle Scholar
  22. 22.
    Cota, V.R., Medeiros, D.C., Vilela, M.R.S.P., Doretto, M.C., Moraes, M.F.D.: Distinct patterns of electrical stimulation of the basolateral amygdala influence pentylenetetrazole seizure outcome. Epilepsy Behav. 14, 26–31 (2009)CrossRefGoogle Scholar
  23. 23.
    de Oliveira, J.C., de Castro Medeiros, D., e Rezende, G.H.D.S., Moraes, M.F.D., Cota, V.R.: Temporally unstructured electrical stimulation to the amygdala suppresses behavioral chronic seizures of the pilocarpine animal model. Epilepsy Behav. 36, 159–164 (2014)Google Scholar
  24. 24.
    de Oliveira, J.C., Maciel, R.M., Moraes, M.F.D., Cota, V.R.: Asynchronous, bilateral, and biphasic temporally unstructured electrical stimulation of amygdalae enhances the suppression of pentylenetetrazoleinduced seizures in rats. Epilepsy Res. 146, 1–8 (2018)CrossRefGoogle Scholar
  25. 25.
    de Oliveira, J.C., Drabowski, B.M.B., Rodrigues, S.M.A.F., Maciel, R.M., Moraes, M.F.D., Cota, V.R.: Seizure suppression by asynchronous non-periodic electrical stimulation of the amygdala is partially mediated by indirect desynchronization from nucleus accumbens. Epilepsy Res. 154, 107–115 (2019)CrossRefGoogle Scholar
  26. 26.
    Steriade, M.: Neuronal Substrates of Sleep and Epilepsy. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  27. 27.
    Wu, J., Yang, H., Peng, Y., Fang, L., Zheng, W., Song, Z.: The role of local field potential coupling in epileptic synchronization. Neural Regen. Res. 8, 745 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sofia M. A. F. Rodrigues
    • 1
  • Jasiara C. de Oliveira
    • 1
  • Vinícius Rosa Cota
    • 1
    Email author
  1. 1.Laboratório Interdisciplinar de Neuroengenharia e NeurociênciasUniversidade Federal de São João del-ReiSão João del-ReiBrazil

Personalised recommendations