Application of Machine Learning Approaches to Identify New Anticonvulsant Compounds Active in the 6 Hz Seizure Model
Abstract
Epilepsy is the second most common chronic brain disorder, affecting 65 million people worldwide. According to the NIH’s Epilepsy Therapy Screening Program, evaluation of potential new antiepileptic drug candidates begins with assessment of their protective effects in two acute seizure models in mice, the Maximal Electroshock Seizure test and the 6 Hz test. The latter elicits partial seizures through an electrical stimulus of 44 mA, at which many clinically established anti-seizure drugs do not suppress seizures. The inclusion of this “high-hurdle” acute seizure assay at the initial stage of the drug identification phase is intended to increase the probability that agents with improved efficacy will be detected. In this work, we have used machine learning approximations to develop in silico models capable of identifying novel anticonvulsant drugs with protective effects in the 6 Hz seizure model. Linear classifiers based on Dragon conformation-independent descriptors were generated through an in-house routine in R environment and validated through standard validation procedures. They were later combined through different ensemble learning schemes. The best ensemble comprised the 29 best-performing models combined using the MIN operator. With the objective of finding new drug repurposing opportunities (i.e. identifying second or further therapeutic indications, in our case anticonvulsant activity, in existing drugs), such model ensemble was applied in a virtual screening campaign of DrugBank and Sweetlead databases. 28 approved drugs were identified as potential protective agents in the 6 Hz model. The present study constitutes an example of the use of machine learning approximations to systematically guide drug repurposing projects.
Keywords
Machine learning Ensemble learning 6 Hz seizure model Anticonvulsant drugs Virtual screening Epilepsy Drug repurposingNotes
Acknowledgments
The authors would like to thank the following public and non-profit organisations: National University of La Plata (UNLP) and Argentinean National Council of Science and Technological Research (CONICET).
Funding
Support was received from the National University of La Plata (UNLP) [grant X729].
Supplementary material
References
- 1.World Health Organization: Fact Sheet Epilepsy. https://www.who.int/news-room/fact-sheets/detail/epilepsy
- 2.Xia, L., Ou, S., Pan, S.: Initial response to antiepileptic drugs in patients with newly diagnosed epilepsy as a predictor of long-term outcome. Front. Neurol. 8, 658 (2017). https://doi.org/10.3389/fneur.2017.00658CrossRefGoogle Scholar
- 3.Corsello, S.M., et al.: The Drug Repurposing Hub: a next-generation drug library and information resource. Nat. Med. 23, 405–408 (2017). https://doi.org/10.1038/nm.4306CrossRefGoogle Scholar
- 4.Talevi, A.: Drug repositioning: current approaches and their implications in the precision medicine era. Expert. Rev. Precis. Med. Drug Dev. 3, 49–61 (2018). https://doi.org/10.1080/23808993.2018.1424535CrossRefGoogle Scholar
- 5.Barton, M.E., Klein, B.D., Wolf, H.H., White, H.S.: Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res. 47, 217–227 (2001). https://doi.org/10.1016/S0920-1211(01)00302-3CrossRefGoogle Scholar
- 6.Löscher, W.: Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 20(5), 359–368 (2011). https://doi.org/10.1016/j.seizure.2011.01.003CrossRefGoogle Scholar
- 7.Vyskovsky, R., Schwarz, D., Janousova, E., Kasparek, T.: Random subspace ensemble artificial neural networks for first-episode Schizophrenia classification. In: Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (Gdansk: FedCSIS), pp. 317–321 (2016). https://doi.org/10.15439/2016f333
- 8.Kamiński, K., Wiklik, B., Obniska, J.: Synthesis and anticonvulsant activity of new N-phenyl-2-(4-phenylpiperazin-1-yl) acetamide derivatives. Med. Chem. Res. 24(7), 3047–3061 (2015). https://doi.org/10.1007/s00044-015-1360-6CrossRefGoogle Scholar
- 9.Dawidowski, M., Lewandowski, W., Turło, J.: Synthesis of new perhydropyrrolo [1, 2-a] pyrazine derivatives and their evaluation in animal models of epilepsy. Molecules 19(10), 15955–15981 (2014). https://doi.org/10.3390/molecules191015955CrossRefGoogle Scholar
- 10.Coleman, N., et al.: The riluzole derivative 2-amino-6-trifluoromethylthio-benzothiazole (SKA-19), a mixed KCa2 activator and NaV blocker, is a potent novel anticonvulsant. Neurotherapeutics 12(1), 234–249 (2015). https://doi.org/10.1007/s13311-014-0305-yCrossRefGoogle Scholar
- 11.Obniska, J., Chlebek, I., Kamiński, K., Bojarski, A.J., Satała, G.: Synthesis, anticonvulsant activity and 5-HT1A/5-HT7 receptors affinity of 1-[(4-arylpiperazin-1-yl)-propyl]-succinimides. Pharmacol. Rep. 64(2), 326–335 (2012)CrossRefGoogle Scholar
- 12.Xian-Qing, D., Ming-Xia, S., Guo-Hua, G., Shi-Ben, W., Zhe-Shan, Q.: Synthesis and anticonvulsant evaluation of some new 6-(substituted-phenyl) thiazolo [3, 2-b][1, 2, 4]triazole derivatives in mice. Iran. J. Pharm. Res. 13(2), 459–469 (2014)Google Scholar
- 13.Byrtus, H., Obniska, J., Czopek, A., Kamiński, K., Pawłowski, M.: Synthesis and anticonvulsant activity of new N-Mannich bases derived from 5-cyclopropyl-5-phenyl- and 5-cyclopropyl-5-(4-chlorophenyl)-imidazolidine-2, 4-diones. Bioorg. Med. Chem. 19(20), 6149–6156 (2011). https://doi.org/10.1016/j.bmc.2011.08.017CrossRefGoogle Scholar
- 14.Florek-Luszczki, M., Wlaz, A., Luszczki, J.J.: Interactions of levetiracetam with carbamazepine, phenytoin, topiramate and vigabatrin in the mouse 6 Hz psychomotor seizure model – A type II isobolographic analysis. Eur. J. Pharmacol. 723, 410–418 (2014). https://doi.org/10.1016/j.ejphar.2013.10.063CrossRefGoogle Scholar
- 15.Dawidowski, M., Turło, M.: Multicomponent synthesis and anticonvulsant activity of monocyclic 2, 6-diketopiperazine derivatives. Med. Chem. Res. 23(4), 2007–2018 (2014). https://doi.org/10.1007/s00044-013-0800-4CrossRefGoogle Scholar
- 16.Ugale, V.G., Bari, S.B.: Structural exploration of quinazolin-4 (3H)-ones as anticonvulsants: rational design, synthesis, pharmacological evaluation, and molecular docking studies. Arch. Pharm. 349(11), 864–880 (2016). https://doi.org/10.1002/ardp.201600218CrossRefGoogle Scholar
- 17.Tomaciello, F., Leclercq, K., Kaminski, R.M.: Resveratrol lacks protective activity against acute seizures in mouse models. Neurosci. Lett. 632, 199–203 (2016). https://doi.org/10.1016/j.neulet.2016.09.002CrossRefGoogle Scholar
- 18.Sałat, K., et al.: Novel, highly potent and in vivo active inhibitor of GABA transporter subtype 1 with anticonvulsant, anxiolytic, antidepressant and antinociceptive properties. Neuropharmacol. 113(Pt A), 331–342 (2017). https://doi.org/10.1016/j.neuropharm.2016.10.019CrossRefGoogle Scholar
- 19.Gunia-Krzyżak, A., et al.: Structure-anticonvulsant activity studies in the group of (E)-N-cinnamoyl aminoalkanols derivatives monosubstituted in phenyl ring with 4-Cl, 4-CH3 or 2-CH3. Bioorg. Med. Chem. 25(2), 471–482 (2017). https://doi.org/10.1016/j.bmc.2016.11.014CrossRefGoogle Scholar
- 20.Zolkowska, D., Dhir, A., Krishnan, K., Covey, D.F., Rogawski, M.A.: Anticonvulsant potencies of the enantiomers of the neurosteroids androsterone and etiocholanolone exceed those of the natural forms. Psychopharmacol. (Berl). 231(17), 3325–3332 (2014). https://doi.org/10.1007/s00213-014-3546-xCrossRefGoogle Scholar
- 21.Shekh-Ahmad, T., et al.: Enantioselective pharmacodynamic and pharmacokinetic analysis of two chiral CNS-active carbamate derivatives of valproic acid. Epilepsia 55(12), 1944–1952 (2014). https://doi.org/10.1111/epi.12857CrossRefGoogle Scholar
- 22.Kamiński, K., Wiklik, B., Obniska, J.: Synthesis, anticonvulsant properties, and SAR analysis of differently substituted pyrrolidine-2, 5-diones and piperidine-2, 6-diones. Arch. Pharm. (Weinheim) 347(11), 840–852 (2014). https://doi.org/10.1002/ardp.201400179CrossRefGoogle Scholar
- 23.Orellana-Paucar, A.M., et al.: Insights from zebrafish and mouse models on the activity and safety of ar-turmerone as a potential drug candidate for the treatment of epilepsy. PLoS ONE 8(12), e81634 (2013). https://doi.org/10.1371/journal.pone.0081634CrossRefGoogle Scholar
- 24.Nieoczym, D., Socała, K., Jedziniak, P., Olejnik, M., Wlaź, P.: Effect of sildenafil, a selective phosphodiesterase 5 inhibitor, on the anticonvulsant action of some antiepileptic drugs in the mouse 6-Hz psychomotor seizure model. Prog. Neuropsychopharmacol. Biol. Psychiatry 47, 104–110 (2012). https://doi.org/10.1016/j.pnpbp.2013.08.009CrossRefGoogle Scholar
- 25.Dawidowski, M., Wilczek, M., Kubica, K., Skolmowski, M., Turło, J.: Structure-activity relationships of the aromatic site in novel anticonvulsant pyrrolo [1, 2-a]pyrazine derivatives. Bioorg. Med. Chem. Lett. 23(22), 6106–6110 (2013). https://doi.org/10.1016/j.bmcl.2013.09.022CrossRefGoogle Scholar
- 26.Shaikh, M.F., Tan, K.N., Borges, K.: Anticonvulsant screening of luteolin in four mouse seizure models. Neurosci. Lett. 550, 195–199 (2013). https://doi.org/10.1016/j.neulet.2013.06.065CrossRefGoogle Scholar
- 27.Buenafe, O.E., et al.: Tanshinone IIA exhibits anticonvulsant activity in zebrafish and mouse seizure models. ACS. Chem. Neurosci. 4(11), 1479–1487 (2013). https://doi.org/10.1021/cn400140eCrossRefGoogle Scholar
- 28.Kumar, D., Kumar Sharma, V., Kumar, R., Singh, T., Singh, H., Singh, A.D., Roy, R.K.: Design, synthesis and anticonvulsant activity of some new 5, 7-dibromoisatin semicarbazone derivatives. EXCLI J. 12, 628–640 (2013)Google Scholar
- 29.Wlaz, A., Kondrat-Wrobel, M.W., Zaluska, K., Kochman, E., Rekas, A.R., Luszczki, J.J.: Synergistic interaction of levetiracetam with gabapentin in the mouse 6 Hz psychomotor seizure model – A type II isobolographic analysis. Curr. Issues Pharm. Med. Sci. 28(3), 204–207 (2015). https://doi.org/10.1515/cipms-2015-0073CrossRefGoogle Scholar
- 30.Shandra, A., Shandra, P., Kaschenko, O., Matagne, A., Stöhr, T.: Synergism of lacosamide with established antiepileptic drugs in the 6-Hz seizure model in mice. Epilepsia 54(7), 1167–1175 (2013). https://doi.org/10.1111/epi.12237CrossRefGoogle Scholar
- 31.Ahsan, M.J., Khalilullah, H., Yasmin, S., Singh Jadav, S., Stables, J.P.: Synthesis and anticonvulsant evaluation of 2-(substituted benzylidene/ethylidene)-N-(substituted phenyl) hydrazinecarboxamide analogues. Med. Chem. Res. 22(6), 2746–2754 (2013). https://doi.org/10.1007/s00044-012-0271-zCrossRefGoogle Scholar
- 32.Tripathi, L., Kumar, P.: Augmentation of GABAergic neurotransmission by novel N-(substituted)-2-[4-(substituted) benzylidene] hydrazinecarbothioamides—a potential anticonvulsant approach. Eur. J. Med. Chem. 64, 477–487 (2013). https://doi.org/10.1016/j.ejmech.2013.04.019CrossRefGoogle Scholar
- 33.Ulloora, S., Shabaraya, R., Ranganathan, R., Adhikari, A.V.: Synthesis, anticonvulsant and anti-inflammatory studies of new 1, 4-dihydropyridin-4-yl-phenoxyacetohydrazones. Eur. J. Med. Chem. 70, 341–349 (2013). https://doi.org/10.1016/j.ejmech.2013.10.010CrossRefGoogle Scholar
- 34.Zuliani, V., Rivara, M.: In vivo screening of diarylimidazoles as anticonvulsant agents. Med. Chem. Res. 21(11), 3428–3434 (2011). https://doi.org/10.1007/s00044-011-9869-9CrossRefGoogle Scholar
- 35.Kumar, P., Shrivastava, B., Pandeya, S.M., Tripathi, L., Stables, J.P.: Design, synthesis, and anticonvulsant evaluation of some novel 1, 3 benzothiazol-2-yl hydrazones/acetohydrazones. Med. Chem. Res. 21(9), 2428–2442 (2012). https://doi.org/10.1007/s00044-011-9768-0CrossRefGoogle Scholar
- 36.Hebeisen, S., et al.: Eslicarbazepine and the enhancement of slow inactivation of voltage-gated sodium channels: a comparison with carbamazepine, oxcarbazepine and lacosamide. Neuropharmacology 89, 122–1235 (2015). https://doi.org/10.1016/j.neuropharm.2014.09.008CrossRefGoogle Scholar
- 37.Ahsan, M.J., Khalilullah, H., Stables, J.P., Govindasamy, J.: Synthesis and anticonvulsant activity of 3a, 4-dihydro-3H-indeno [1, 2-c] pyrazole-2-carboxamide/carbothioamide analogues. J. Enzyme Inhib. Med. Chem. 28(3), 644–650 (2013). https://doi.org/10.3109/14756366.2012.663364CrossRefGoogle Scholar
- 38.Tosh, D.K., et al.: Structural sweet spot for A1 adenosine receptor activation by truncated (N)-methanocarba nucleosides: receptor docking and potent anticonvulsant activity. J. Med. Chem. 55(18), 8075–8090 (2012)CrossRefGoogle Scholar
- 39.Mishra, R.K., Baker, M.T.: Ortho Substituent effects on the anticonvulsant properties of 4-hydroxy-trifluoroethyl phenols. Bioorg. Med. Chem. Lett. 22(17), 5608–5611 (2012). https://doi.org/10.1016/j.bmcl.2012.07.001CrossRefGoogle Scholar
- 40.Wang, D.D., Englot, D.J., Garcia, P.A., Lawton, M.T., Young, W.L.: Minocycline and tetracycline-class antibiotics are protective against partial seizures in vivo. Epilepsy Behav. 24(3), 314–318 (2012). https://doi.org/10.1016/j.yebeh.2012.03.035CrossRefGoogle Scholar
- 41.Dawidowski, M., Herold, F., Chodkowski, A., Kleps, J.: Synthesis and anticonvulsant activity of novel 2, 6-diketopiperazine derivatives. Part 2: Perhydropyrido [1, 2-a] pyrazines. Eur. J. Med. Chem. 48, 347–353 (2012). https://doi.org/10.1016/j.ejmech.2011.11.032CrossRefGoogle Scholar
- 42.Gasior, M., Socała, K., Nieoczym, D., Wlaź, P.: Clavulanic acid does not affect convulsions in acute seizure tests in mice. J. Neural. Transm. 119(1), 1–6 (2012). https://doi.org/10.1007/s00702-011-0662-1CrossRefGoogle Scholar
- 43.Perez-Llamas, C., Lopez-Bigas, N.: Gitools: analysis and visualisation of genomic data using interactive heat-maps. PLoS ONE 6, e19541 (2011). https://doi.org/10.1371/journal.pone.0019541CrossRefGoogle Scholar
- 44.Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y.D., Lee, K.H., Tropsha, A.: Rational selection of training and test sets for the development of validated QSAR models. J. Comput. Aided Mol. Des. 17, 241–253 (2003). https://doi.org/10.1023/A:1025386326946CrossRefGoogle Scholar
- 45.Martin, T.M., et al.: Does rational selection of training and test sets improve the outcome of QSAR modeling? J. Chem. Inf. Model. 52, 2570–2578 (2012). https://doi.org/10.1021/ci300338wCrossRefGoogle Scholar
- 46.Everitt, B.S., Landau, S., Leese, M., Stahl, D.: Cluster Analysis, 5th edn. Wiley, West Sussex (2011)CrossRefGoogle Scholar
- 47.El Habib Daho, M., Chikh, M.A.: Combining bootstrapping samples, random subspaces and random forests to build classifiers. J. Med. Imaging Health Inf. 5, 539–544 (2015). https://doi.org/10.1166/jmihi.2015.1423CrossRefGoogle Scholar
- 48.Yu, G., Zhang, G., Domeniconi, C., Yu, Z., You, J.: Semi-supervised classification based on random subspace dimensionality reduction. Pattern Recogn. 45, 1119–1135 (2012). https://doi.org/10.1016/j.patcog.2011.08.024CrossRefzbMATHGoogle Scholar
- 49.Toropova, A.P., Toropov, A.A.: CORAL: binary classifications (active/inactive) for drug-induced liver injury. Toxicol. Lett. 268, 51–57 (2017). https://doi.org/10.1016/j.toxlet.2017.01.011CrossRefGoogle Scholar
- 50.Gramatica, P.: On the development and validation of QSAR models. Methods Mol. Biol. 930, 499–526 (2013). https://doi.org/10.1007/978-1-62703-059-5_21CrossRefGoogle Scholar
- 51.Roy, K., Mitra, I.: On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Comb. Chem. High Throughput Screen. 14(6), 450–474 (2011). https://doi.org/10.2174/138620711795767893CrossRefGoogle Scholar
- 52.Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1 CrossRefGoogle Scholar
- 53.Robin, X., et al.: pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinf. 12, 77 (2011). https://doi.org/10.1186/1471-2105-12-77CrossRefGoogle Scholar
- 54.Truchon, J.F., Bayly, C.L.: Evaluating virtual screening methods: good and bad metrics for the “early recognition” problem. J. Chem. Inf. Model. 47, 488–508 (2007). https://doi.org/10.1021/ci600426eCrossRefGoogle Scholar
- 55.Yabuuchi, H., et al.: Analysis of multiple compound–protein interactions reveals novel bioactive molecules. Mol. Syst. Biol. 7, 472, 1–12 (2011). https://doi.org/10.1038/msb.2011.5CrossRefGoogle Scholar
- 56.Lätti, S., Niinivehmas, S., Pentikäinen, O.T.: Rocker: open source, easy-to-use tool for AUC and enrichment calculations and ROC visualization. J. Cheminformatics 8(1), 45 (2016). https://doi.org/10.1186/s13321-016-0158-yCrossRefGoogle Scholar
- 57.Mysinger, M.M., Carchia, M., Irwin, J.J., Shoichet, B.K.: Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem. 55(14), 6582–6594 (2012). https://doi.org/10.1021/jm300687eCrossRefGoogle Scholar
- 58.Alberca, L.N., et al.: Cascade ligand-and structure-based virtual screening to identify new trypanocidal compounds inhibiting putrescine uptake. Front. Cell. Infect. Microbiol. 8, 173 (2018). https://doi.org/10.3389/fcimb.2018.00173CrossRefGoogle Scholar
- 59.Law, V., et al.: DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 42, D1091–D1097 (2014). https://doi.org/10.1093/nar/gkt1068CrossRefGoogle Scholar
- 60.Novick, P.A., Ortiz, O.F., Poelman, J., Abdulhay, A.Y., Pande, V.S.: SWEETLEAD: an in silico database of approved drugs, regulated chemicals, and herbal isolates for computer-aided drug discovery. PLoS ONE 8(11), e79568 (2013). https://doi.org/10.1371/journal.pone.0079568CrossRefGoogle Scholar
- 61.Talevi, A., Carrillo, C., Comini, M.: The thiol-polyamine metabolism of Trypanosoma cruzi: molecular targets and drug repurposing strategies. Curr. Med. Chem. 26 (2019). https://doi.org/10.2174/0929867325666180926151059
- 62.Oprea, T.I., Overington, J.P.: Computational and practical aspects of drug repositioning. Assay Drug Dev. Technol. 13, 299–306 (2015). https://doi.org/10.1089/adt.2015.29011.tiodrrrCrossRefGoogle Scholar