Order-Preserving Biclustering Based on FCA and Pattern Structures

  • Nyoman JuniartaEmail author
  • Miguel Couceiro
  • Amedeo Napoli
Part of the Studies in Computational Intelligence book series (SCI, volume 880)


Biclustering is similar to formal concept analysis (FCA), whose objective is to retrieve all maximal rectangles in a binary matrix and arrange them in a concept lattice. FCA is generalized to more complex data using pattern structure. In this article, we explore the relation of biclustering and pattern structure. More precisely, we study the order-preserving biclusters, whose rows induce the same linear order across all columns.


  1. 1.
    Baixeries, J., Kaytoue, M., Napoli, A.: Characterizing functional dependencies in formal concept analysis with pattern structures. Ann. Math. Artif. Intell. 72, 129–149 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression data: the order-preserving submatrix problem. J. Comput. Biol. 10(3–4), 373–384 (2003)CrossRefGoogle Scholar
  3. 3.
    Codocedo, V., Bosc, G., Kaytoue, M., Boulicaut, J.F., Napoli, A.: A proposition for sequence mining using pattern structures. In: International Conference on Formal Concept Analysis, pp. 106–121. Springer (2017)Google Scholar
  4. 4.
    Codocedo, V., Napoli, A.: Lattice-based biclustering using partition pattern structures. In: Proceedings of the Twenty-first European Conference on Artificial Intelligence, pp. 213–218. IOS Press (2014)Google Scholar
  5. 5.
    Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: International Conference on Conceptual Structures, pp. 129–142. Springer (2001)Google Scholar
  6. 6.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations (1999)CrossRefGoogle Scholar
  7. 7.
    Hedenfalk, I., Duggan, D., Chen, Y., Radmacher, M., Bittner, M., Simon, R., Meltzer, P., Gusterson, B., Esteller, M., Raffeld, M., et al.: Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344(8), 539–548 (2001)CrossRefGoogle Scholar
  8. 8.
    Henriques, R., Madeira, S.C.: BicSPAM: flexible biclustering using sequential patterns. BMC Bioinform. 15(1), 130 (2014)CrossRefGoogle Scholar
  9. 9.
    Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 1(1), 24–45 (2004)CrossRefGoogle Scholar
  10. 10.
    Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.: Mining sequential patterns by pattern-growth: the prefixspan approach. IEEE Trans. Knowl. Data Eng. 16(11), 1424–1440 (2004)CrossRefGoogle Scholar
  11. 11.
    Pio, G., Ceci, M., D’Elia, D., Loglisci, C., Malerba, D.: A novel biclustering algorithm for the discovery of meaningful biological correlations between micrornas and their target genes. BMC Bioinform. 14(7), S8 (2013)CrossRefGoogle Scholar
  12. 12.
    Wang, J., Han, J.: BIDE: efficient mining of frequent closed sequences. In: Proceedings of 20th International Conference on Data Engineering, pp. 79–90. IEEE (2004)Google Scholar
  13. 13.
    Yan, X., Han, J., Afshar, R.: CloSpan: mining: closed sequential patterns in large datasets. In: Proceedings of the 2003 SIAM International Conference on Data Mining, pp. 166–177. SIAM (2003)Google Scholar
  14. 14.
    Zaki, M.J.: Spade: an efficient algorithm for mining frequent sequences. Mach. Learn. 42(1–2), 31–60 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Nyoman Juniarta
    • 1
    Email author
  • Miguel Couceiro
    • 1
  • Amedeo Napoli
    • 1
  1. 1.Université de Lorraine, CNRS, Inria, LORIANancyFrance

Personalised recommendations