Efficient Infrequent Pattern Mining Using Negative Itemset Tree

  • Yifeng LuEmail author
  • Florian Richter
  • Thomas Seidl
Part of the Studies in Computational Intelligence book series (SCI, volume 880)


In this work, we focus on a simple and fundamental question: How to find infrequent patterns, i.e. patterns with small support value, in a transactional database. In various practical applications such as science, medical and accident data analysis, frequent patterns usually represent obvious and expected phenomena. Really interesting information might hide in obscure rarity. Existing rare pattern mining approaches are mainly adapted from frequent itemset mining algorithms, which either suffered from the expensive candidate generation step or need to traverse all frequent patterns first. In this paper, we propose an infrequent pattern mining algorithm using a top-down and depth-first traversing strategy to avoid the two obstacles above. A negative itemset tree is employed to accelerate the mining process with its dataset compressing and fast counting ability.


  1. 1.
    Adda, M., Wu, L., Feng, Y.: Rare itemset mining. In: ICMLA 2007, pp. 73–80. IEEE (2007)Google Scholar
  2. 2.
    Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)Google Scholar
  3. 3.
    Agarwal, R.C., Aggarwal, C.C., Prasad, V.: A tree projection algorithm for generation of frequent item sets. J. Parallel Distrib. Comput. 61(3), 350–371 (2001)CrossRefGoogle Scholar
  4. 4.
    Fang, G., Pandey, G., Wang, W., Gupta, M., Steinbach, M., Kumar, V.: Mining low-support discriminative patterns from dense and high-dimensional data. IEEE Trans. Knowl. Data Eng. 24(2), 279–294 (2012)CrossRefGoogle Scholar
  5. 5.
    Fournier-Viger, P., Lin, J.C.W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z., Lam, H.T.: The SPMF open-source data mining library version 2. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 36–40. Springer (2016)Google Scholar
  6. 6.
    Gupta, A., Mittal, A., Bhattacharya, A.: Minimally infrequent itemset mining using pattern-growth paradigm and residual trees. In: Proceedings of the 17th International Conference on Management of Data, p. 13 (2011)Google Scholar
  7. 7.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, SIGMOD’00, New York, NY, USA, pp. 1–12. ACM (2000).
  8. 8.
    Hoque, N., Nath, B., Bhattacharyya, D.: An efficient approach on rare association rule mining. In: Proceedings of 7th International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), pp. 193–203. Springer (2013)Google Scholar
  9. 9.
    Koh, Y., Rountree, N.: Finding sporadic rules using apriori-inverse. Advances in Knowledge Discovery and Data Mining, pp. 153–168 (2005)CrossRefGoogle Scholar
  10. 10.
    Koh, Y.S., Ravana, S.D.: Unsupervised rare pattern mining: a survey. ACM Trans. Knowl. Discov. Data (TKDD) 10(4), 45 (2016)Google Scholar
  11. 11.
    Liu, B., Hsu, W., Ma, Y.: Mining association rules with multiple minimum supports. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 337–341. ACM (1999)Google Scholar
  12. 12.
    Liu, B., Hsu, W., Ma, Y.: Pruning and summarizing the discovered associations. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 125–134. ACM (1999)Google Scholar
  13. 13.
    Lu, Y., Richter, F., Seidl, T.: Efficient infrequent itemset mining using depth-first and top-down lattice traversal. In: International Conference on Database Systems for Advanced Applications, pp. 908–915. Springer (2018)Google Scholar
  14. 14.
    Szathmary, L., Napoli, A., Valtchev, P.: Towards rare itemset mining. In: Tools with Artificial Intelligence 2007, ICTAI 2007. 19th IEEE International Conference on, vol. 1, pp. 305–312. IEEE (2007)Google Scholar
  15. 15.
    Troiano, L., Scibelli, G.: A time-efficient breadth-first level-wise lattice-traversal algorithm to discover rare itemsets. Data Min. Knowl. Discov. 28(3), 773–807 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Tsang, S., Koh, Y.S., Dobbie, G.: Rp-tree: rare pattern tree mining. In: Proceedings of the 13th International Conference on Data Warehousing and Knowledge Discovery, DaWaK’11, pp. 277–288. Springer, Berlin, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 2: efficient mining algorithms for frequent/closed/maximal itemsets. In: Fimi, vol. 126 (2004)Google Scholar
  18. 18.
    Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 12(3), 372–390 (2000)CrossRefGoogle Scholar
  19. 19.
    Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 326–335. ACM (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Database Systems and Data Mining GroupLMUMunichGermany

Personalised recommendations