Polyphenols and Flavonoids from Honey: A Special Focus on Diabetes

  • Visweswara Rao PasupuletiEmail author
  • Chandra Sekhar Arigela


Honey is a matrix of vegetal origin processed by various types of bees. Besides physical properties honey constitutes of several minor chemical constituents such as polyphenols and flavonoids. Phenolic compounds or polyphenols are basically products of the secondary metabolism of plants and so a major group of compounds occurring in honey. The colour intensity of honey defines the percentage of polyphenols present in it. The polyphenols are classified into different types of groups due to the presence of a number of phenol rings and their binding capacity to the structural elements. Phenolic acids and flavonoids are the main classes of the polyphenols. Flavonoids may be categorized into several types including flavonols, flavanones, flavones, anthocyanidins and isoflavones due to their dietary significance. The phenolic compounds show a great extent of biological activities such as antioxidant, antimicrobial, anti-diabetic, anticancer and so on. Honey is one of the natural products which helps in decreasing oxidative stress by cleaning up the oxygen free radicals and also decreases blood sugar level. The rise in reactive oxygen species production depends on various factors. One of the factors is the glucose absorption by muscle cells and adipose tissue which contributes to oxidative stress and, thereby, rise in glycogen synthesis and glucose uptake by cells. Insulin resistance is also one of the important aspects that occur through oxidative stress by disturbing the insulin pathway. The honey found to have the mechanistic properties that ameliorate the damages occurred in diabetic condition and thereby provide benefits to the human beings. This chapter clearly sheds light on the action of polyphenols and flavonoids of honey for the human wellness especially on diabetes.


Honey Polyphenols Flavonoids Anti-diabetic Cancer Biological activity 


  1. Ahmed S, Othman NH (2013) Review of the medicinal effects of tualang honey and a comparison with manuka honey. Malaysian J Med Sci MJMS 20(3):6Google Scholar
  2. Akalın H, Bayram M, Anlı RE (2017) Determination of some individual phenolic compounds and antioxidant capacity of mead produced from different types of honey. J Inst Brew 123(1):167–174CrossRefGoogle Scholar
  3. Alam MA, Subhan N, Hossain H, Hossain M, Reza HM, Rahman MM, Ullah MO (2016) Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutr Metab 13(1):27CrossRefGoogle Scholar
  4. Al-Numair KS, Chandramohan G, Veeramani C, Alsaif MA (2015) Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats. Redox Rep 20(5):198–209CrossRefGoogle Scholar
  5. Alvarez-Suarez JM, Giampieri F, Battino M (2013) Honey as a source of dietary antioxidants: structures, bioavailability and evidence of protective effects against human chronic diseases. Curr Med Chem 20(5):621–638CrossRefGoogle Scholar
  6. Al-Waili N (2003) Intrapulmonary administration of natural honey solution, hyperosmolar dextrose or hypoosmolar distill water to normal individuals and to patients with type-2 diabetes mellitus or hypertension: their effects on blood glucose level, plasma insulin and C-peptide, blood pressure and peaked expiratory flow rate. Eur J Med Res 8(7):295–303PubMedGoogle Scholar
  7. Amic D, Davidovic-Amic D, Beslo D, Rastija V, Lucic B, Trinajstic N (2007) SAR and QSAR of the antioxidant activity of flavonoids. Curr Med Chem 14(7):827–845CrossRefGoogle Scholar
  8. An G, Gallegos J, Morris ME (2011) The bioflavonoid kaempferol is an Abcg2 substrate and inhibits Abcg2- mediated quercetin efflux. Drug Metab Dispos 39(3):426–432CrossRefGoogle Scholar
  9. Arráez-Román D, Gómez-Caravaca AM, Gómez-Romero M, Segura-Carretero A, Fernández-Gutiérrez A (2006) Identification of phenolic compounds in rosemary honey using solid-phase extraction by capillary electrophoresis– electrospray ionization-mass spectrometry. J Pharm Biomed Anal 41(5):1648–1656CrossRefGoogle Scholar
  10. Aziz MSA, Giribabu N, Rao PV, Salleh N (2017) Pancreatoprotective effects of Geniotrigona thoracica stingless bee honey in streptozotocin-nicotinamide-induced male diabetic rats. Biomed Pharmacother 89:135–145CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bach-Faig A, Berry EM, Lairon D, Reguant J, Trichopoulou A, Dernini S, Medina FX, Battino M, Belahsen R, Miranda G, Serra-Majem L (2011) Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr 14(12A):2274–2284CrossRefPubMedPubMedCentralGoogle Scholar
  12. Batumalaie K, Zaman Safi S, Mohd Yusof K, Shah Ismail I, Devi Sekaran S, Qvist R (2013) Effect of gelam honey on the oxidative stress-induced signaling pathways in pancreatic hamster cells. Int J Endocrinol 2013Google Scholar
  13. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78(2):547–581CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bilkisu MM, Tukur MA, Sheriff M, Sera S, Falmata AS (2011) The effect of oral administration of honey and glucophage alone or their combination on the serum biochemical parameters of induced diabetic rats. Res Pharm Biotechnol 3(9):118–122Google Scholar
  15. Bogdanov S (1997) Nature and origin of the antibacterial substances in honey. LWT-Food Sci Technol 30(7):748–753CrossRefGoogle Scholar
  16. Bogdanov S, Jurendic T, Sieber R, Gallmann P (2008) Honey for nutrition and health: a review. J Am Coll Nutr 27(6):677–689CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bors W, Heller W, Michel C, Saran M (1990) [36] Flavonoids as antioxidants: determination of radical- scavenging efficiencies. In: Methods in enzymology, vol 186. Academic, New York, pp 343–355Google Scholar
  18. Campillo N, Viñas P, Férez-Melgarejo G, Hernández-Córdoba M (2015) Dispersive liquid–liquid microextraction for the determination of flavonoid aglycone compounds in honey using liquid chromatography with diode array detection and time-of-flight mass spectrometry. Talanta 131:185–191CrossRefPubMedPubMedCentralGoogle Scholar
  19. Campone L, Piccinelli AL, Pagano I, Carabetta S, Di Sanzo R, Russo M, Rastrelli L (2014) Determination of phenolic compounds in honey using dispersive liquid–liquid microextraction. J Chromatogr A 1334:9–15CrossRefGoogle Scholar
  20. Chan CW, Deadman BJ, Manley-Harris M, Wilkins AL, Alber DG, Harry E (2013) Analysis of the flavonoid component of bioactive New Zealand mānuka (Leptospermum scoparium) honey and the isolation, characterisation and synthesis of an unusual pyrrole. Food Chem 141(3):1772–1781CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chu YF, Sun JIE, Wu X, Liu RH (2002) Antioxidant and antiproliferative activities of common vegetables. J Agric Food Chem 50(23):6910–6916CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cianciosi D, Forbes-Hernández TY, Afrin S, Gasparrini M, Reboredo-Rodriguez P, Manna PP et al (2018) Phenolic compounds in honey and their associated health benefits: a review. Molecules 23(9):2322CrossRefGoogle Scholar
  23. Ciulu M, Solinas S, Floris I, Panzanelli A, Pilo MI, Piu PC et al (2011) RP-HPLC determination of water- soluble vitamins in honey. Talanta 83(3):924–929CrossRefPubMedPubMedCentralGoogle Scholar
  24. Coskun O, Kanter M, Korkmaz A, Oter S (2005) Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol Res 51(2):117–123CrossRefPubMedPubMedCentralGoogle Scholar
  25. Day AJ, DuPont MS, Ridley S, Rhodes M, Rhodes MJ, Morgan MR, Williamson G (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity. FEBS Lett 436(1):71–75CrossRefPubMedPubMedCentralGoogle Scholar
  26. Day AJ, Cañada FJ, Dı́az JC, Kroon PA, Mclauchlan R, Faulds CB, Plumb GW, Morgan MRA, Williamson G (2000) Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett 468(2–3):166–170CrossRefPubMedPubMedCentralGoogle Scholar
  27. Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013) Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18(14):1818–1892CrossRefPubMedPubMedCentralGoogle Scholar
  28. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95CrossRefPubMedPubMedCentralGoogle Scholar
  29. Erejuwa OO, Sulaiman SA, Ab Wahab MS, Sirajudeen KNS, Salzihan MS (2009) Effects of Malaysian tualang honey supplementation on glycemia, free radical scavenging enzymes and markers of oxidative stress in kidneys of normal and streptozotocin-induced diabetic rats. Int J Cardiol 137:S45Google Scholar
  30. Erejuwa OO, Sulaiman SA, Wahab MSA, Sirajudeen KNS, Salleh MSM, Gurtu S (2010a) Antioxidant protective effect of glibenclamide and metformin in combination with honey in pancreas of streptozotocin-induced diabetic rats. Int J Mol Sci 11(5):2056–2066CrossRefPubMedPubMedCentralGoogle Scholar
  31. Erejuwa OO, Sulaiman SA, Wahab MS, Sirajudeen KNS, Salleh MM, Gurtu S (2010b) Antioxidant protection of Malaysian tualang honey in pancreas of normal and streptozotocin-induced diabetic rats. Annales d’endocrinologie 71(4):291–296. Elsevier MassonCrossRefGoogle Scholar
  32. Erejuwa OO, Sulaiman SA, Wahab MS, Salam SKN, Salleh MSM, Gurtu S (2011) Effect of glibenclamide alone versus glibenclamide and honey on oxidative stress in pancreas of streptozotocin-induced diabetic rats. Int J Appl Res Nat Prod 4(2):1–10Google Scholar
  33. Erejuwa OO, Sulaiman SA, Wahab MSA (2012) Fructose might contribute to the hypoglycemic effect of honey. Molecules 17(2):1900–1915CrossRefPubMedPubMedCentralGoogle Scholar
  34. Erejuwa OO, Sulaiman SA, Wahab MSA (2014) Modulation of gut microbiota in the management of metabolic disorders: the prospects and challenges. Int J Mol Sci 15(3):4158–4188CrossRefPubMedPubMedCentralGoogle Scholar
  35. Erejuwa O, Nwobodo N, Akpan J, Okorie U, Ezeonu C, Ezeokpo B et al (2016) Nigerian honey ameliorates hyperglycemia and dyslipidemia in alloxan-induced diabetic rats. Nutrients 8(3):95CrossRefPubMedPubMedCentralGoogle Scholar
  36. Feás X, Pires J, Estevinho ML, Iglesias A, De Araujo JPP (2010) Palynological and physicochemical data characterisation of honeys produced in the Entre-Douro e Minho region of Portugal. Int J Food Sci Technol 45(6):1255–1262CrossRefGoogle Scholar
  37. Ferreres F, Tomás-Barberán FA, Soler C, García-Viguera C, Ortiz A, Tomás-Lorente F (1994) A simple extractive technique for honey flavonoid HPLC analysis. Apidologie 25(1):21–30CrossRefGoogle Scholar
  38. Folli F, Corradi D, Fanti P, Davalli A, Paez A, Giaccari A et al (2011) The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro-and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Curr Diabetes Rev 7(5):313–324CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gee JM, DuPont MS, Day AJ, Plumb GW, Williamson G, Johnson IT (2000) Intestinal transport of quercetin glycosides in rats involves both deglycosylation and interaction with the hexose transport pathway. J Nutr 130(11):2765–2771CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ghosh S, Basak P, Dutta S, Chowdhury S, Sil PC (2017) New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem Toxicol 103:41–55CrossRefPubMedPubMedCentralGoogle Scholar
  41. Grankvist K, Marklund SL, Täljedal IB (1981) CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J 199(2):393–398CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hamdy AA, Ismail HM, Al-Ahwal AM, Gomaa NF (2009) Determination of flavonoid and phenolic acid contents of clover, cotton and citrus floral honeys. J Egypt Public Health Assoc 84(3–4):245–259PubMedGoogle Scholar
  43. Hii CST, Howell SL (1985) Effects of flavonoids on insulin secretion and 45Ca2+ handling in rat islets of Langerhans. J Endocrinol 107(1):1–8CrossRefGoogle Scholar
  44. Hillage HL (2010) The emerging risk factors collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies (vol 375, pp 2215, 2010). Lancet 376(9745):958–958CrossRefGoogle Scholar
  45. Jaganathan SK, Mandal M (2009) Honey constituents and their apoptotic effect in colon cancer cells. J Apiprod Apimed Sci 1(2):29–36CrossRefGoogle Scholar
  46. Jones HF, Butler RN, Brooks DA (2010) Intestinal fructose transport and malabsorption in humans. Am J Physiol Gastrointest Liver Physiol 300(2):G202–G206CrossRefGoogle Scholar
  47. Jorge AP, Horst H, de Sousa E, Pizzolatti MG, Silva FRMB (2004) Insulinomimetic effects of kaempferitrin on glycaemia and on 14C-glucose uptake in rat soleus muscle. Chem Biol Interact 149(2–3):89–96CrossRefGoogle Scholar
  48. Kappel VD, Cazarolli LH, Pereira DF, Postal BG, Zamoner A, Reginatto FH, Silva FRMB (2013) Involvement of GLUT-4 in the stimulatory effect of rutin on glucose uptake in rat soleus muscle. J Pharm Pharmacol 65(8):1179–1186CrossRefGoogle Scholar
  49. Kečkeš J, Trifković J, Andrić F, Jovetić M, Tešić Ž, Milojković-Opsenica D (2013) Amino acids profile of Serbian unifloral honeys. J Sci Food Agric 93(13):3368–3376CrossRefGoogle Scholar
  50. Kellett GL, Brot-Laroche E, Mace OJ, Leturque A (2008) Sugar absorption in the intestine: the role of GLUT2. Annu Rev Nutr 28:35–54CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kim EK, Kwon KB, Song MY, Han MJ, Lee JH, Lee YR et al (2007) Flavonoids protect against cytokine-induced pancreatic β-cell damage through suppression of nuclear factor κB activation. Pancreas 35(4):e1–e9CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kimmich GA, Randles J (1978) Phloretin-like action of bioflavonoids on sugar accumulation capability of isolated intestinal cells. Membr Biochem 1(3–4):221–237CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN (2009) Hyperglycemic crises in adult patients with diabetes. Diabetes Care 32(7):1335–1343CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kuś PM, Szweda P, Jerković I, Tuberoso CIG (2016) Activity of polish unifloral honeys against pathogenic bacteria and its correlation with colour, phenolic content, antioxidant capacity and other parameters. Lett Appl Microbiol 62(3):269–276CrossRefPubMedPubMedCentralGoogle Scholar
  55. Kwakman PH, Zaat SA (2012) Antibacterial components of honey. IUBMB Life 64(1):48–55CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kwon S, Kim YJ, Kim MK (2008) Effect of fructose or sucrose feeding with different levels on oral glucose tolerance test in normal and type 2 diabetic rats. Nutr Res Pract 2(4):252–258CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lau YS, Tian XY, Huang Y, Murugan D, Achike FI, Mustafa MR (2013) Boldine protects endothelial function in hyperglycemia-induced oxidative stress through an antioxidant mechanism. Biochem Pharmacol 85(3):367–375CrossRefGoogle Scholar
  58. Lee YS, Lee S, Lee HS, Kim BK, Ohuchi K, Shin KH (2005) Inhibitory effects of isorhamnetin-3-O-β-D- glucoside from Salicornia herbacea on rat lens aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues. Biol Pharm Bull 28(5):916–918CrossRefGoogle Scholar
  59. Meng S, Cao J, Feng Q, Peng J, Hu Y (2013) Roles of chlorogenic acid on regulating glucose and lipids metabolism: a review. Evid Based Complement Alternat Med 2013Google Scholar
  60. Miyamoto KI, Hase K, Takagi T, Fujii T, Taketani Y, Minami H et al (1993) Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars. Biochem J 295(1):211–215CrossRefPubMedPubMedCentralGoogle Scholar
  61. Moniruzzaman M, Yung An C, Rao PV, Hawlader MNI, Azlan SABM, Sulaiman SA, Gan SH (2014) Identification of phenolic acids and flavonoids in monofloral honey from Bangladesh by high performance liquid chromatography: determination of antioxidant capacity. BioMed Res Int 2014Google Scholar
  62. Moran TH, McHugh PR (1981) Distinctions among three sugars in their effects on gastric emptying and satiety. Am J Phys Regul Integr Comp Phys 241(1):R25–R30Google Scholar
  63. Nayeem N, Asdaq SMB, Salem H, Ahel-Alfqy S (2016) Gallic acid: a promising lead molecule for drug development. J Appl Pharm 8(2):1–4CrossRefGoogle Scholar
  64. Niture NT, Ansari AA, Naik SR (2014) Anti-hyperglycemic activity of rutin in streptozotocin-induced diabetic rats: an effect mediated through cytokines, antioxidants and lipid biomarkers. Indian J Exp Biol 52(7):720–727PubMedPubMedCentralGoogle Scholar
  65. Oboh G, Agunloye OM, Adefegha SA, Akinyemi AJ, Ademiluyi AO (2015) Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study. J Basic Clin Physiol Pharmacol 26(2):165–170CrossRefPubMedPubMedCentralGoogle Scholar
  66. Omotayo EO, Gurtu S, Sulaiman SA, Wahab MSA, Sirajudeen KNS, Salleh MSM (2010) Hypoglycemic and antioxidant effects of honey supplementation in streptozotocin-induced diabetic rats. Int J Vitam Nutr Res 80(1):74CrossRefPubMedPubMedCentralGoogle Scholar
  67. Ong KC, Khoo HE (1996) Insulinomimetic effects of myricetin on lipogenesis and glucose transport in rat adipocytes but not glucose transporter translocation. Biochem Pharmacol 51(4):423–429CrossRefPubMedPubMedCentralGoogle Scholar
  68. Padayachee A, Netzel G, Netzel M, Day L, Zabaras D, Mikkelsen D, Gidley MJ (2012) Binding of polyphenols to plant cell wall analogues–part 2: phenolic acids. Food Chem 135(4):2287–2292CrossRefPubMedPubMedCentralGoogle Scholar
  69. Palsamy P, Subramanian S (2010) Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stress, and pancreatic β-cell dysfunction in streptozotocin-nicotinamide-induced diabetic rats. J Cell Physiol 224(2):423–432CrossRefPubMedPubMedCentralGoogle Scholar
  70. Pei K, Ou J, Huang J, Ou S (2016) P-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J Sci Food Agric 96(9):2952–2962CrossRefGoogle Scholar
  71. Petretto GL, Cossu M, Alamanni MC (2015) Phenolic content, antioxidant and physico-chemical properties of Sardinian monofloral honeys. Int J Food Sci Technol 50(2):482–491CrossRefGoogle Scholar
  72. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53(10):4290–4302CrossRefGoogle Scholar
  73. Ranneh Y, Ali F, Zarei M, Akim AM, Hamid HA, Khazaai H (2018) Malaysian stingless bee and Tualang honeys: a comparative characterization of total antioxidant capacity and phenolic profile using liquid chromatography- mass spectrometry. LWT 89:1–9CrossRefGoogle Scholar
  74. Rao PV, Krishnan KT, Salleh N, Gan SH (2016) Biological and therapeutic effects of honey produced by honey bees and stingless bees: a comparative review. Rev Bras 26(5):657–664Google Scholar
  75. Riby JE, Fujisawa T, Kretchmer N (1993) Fructose absorption. Am J Clin Nutr 58(5):748S–753SCrossRefGoogle Scholar
  76. Saba ZH, Suzana M, My YA (2013) Honey: food or medicine. Med Health 8(1):3–18Google Scholar
  77. Sabatier S, Amiot MJ, Tacchini M, Aubert S (1992) Identification of flavonoids in sunflower honey. J Food Sci 57(3):773–774CrossRefGoogle Scholar
  78. Sandoval-Acuna C, Ferreira J, Speisky H (2014) Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch Biochem Biophys 559:75–90CrossRefGoogle Scholar
  79. Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130(8):2073S–2085SCrossRefGoogle Scholar
  80. Schramm DD, Karim M, Schrader HR, Holt RR, Cardetti M, Keen CL (2003) Honey with high levels of antioxidants can provide protection to healthy human subjects. J Agric Food Chem 51(6):1732–1735CrossRefGoogle Scholar
  81. Serrano J, Cassanye A, Martín-Gari M, Granado-Serrano A, Portero-Otín M (2016) Effect of dietary bioactive compounds on mitochondrial and metabolic flexibility. Diseases 4(1):14CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sharma CP, Kaushal GP, Sareen VK, Singh S, Bhatia IS (1981) The in vitro metabolism of flavonoids by whole rumen contents and its fractions. Zentralbl Veterinarmed A 28(1):27–34CrossRefGoogle Scholar
  83. Solayman M, Islam MA, Paul S, Ali Y, Khalil MI, Alam N, Gan SH (2016) Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: a comprehensive review. Compr Rev Food Sci Food Saf 15(1):219–233CrossRefGoogle Scholar
  84. Song XY, Yao YF, Yang WD (2012) Pollen analysis of natural honeys from the central region of Shanxi, North China. PLoS One 7(11):e49545CrossRefPubMedPubMedCentralGoogle Scholar
  85. Spencer JP, Chowrimootoo G, Choudhury R, Debnam ES, Srai SK, Rice-Evans C (1999) The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett 458(2):224–230CrossRefGoogle Scholar
  86. Sugihara N, Arakawa T, Ohnishi M, Furuno K (1999) Anti-and pro-oxidative effects of flavonoids on metal- induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with α-linolenic acid. Free Radic Biol Med 27(11–12):1313–1323CrossRefGoogle Scholar
  87. Tedong L, Madiraju P, Martineau LC, Vallerand D, Arnason JT, Desire DD, Lavoie L, Kamtchouing P, Haddad PS (2010) Hydro- ethanolic extract of cashew tree (Anacardium occidentale) nut and its principal compound, anacardic acid, stimulate glucose uptake in C2C12 muscle cells. Mol Nutr Food Res 54(12):1753–1762CrossRefGoogle Scholar
  88. Tsuji PA, Stephenson KK, Wade KL, Liu H, Fahey JW (2013) Structure-activity analysis of flavonoids: direct and indirect antioxidant, and antiinflammatory potencies and toxicities. Nutr Cancer 65(7):1014–1025CrossRefGoogle Scholar
  89. Tzeng TF, Liou SS, Liu IM (2011) Myricetin ameliorates defective post-receptor insulin signaling via β- endorphin signaling in the skeletal muscles of fructose-fed rats. Evid Based Complement Alternat Med 2011Google Scholar
  90. Uldry M, Thorens B (2004) The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch 447(5):480–489CrossRefPubMedPubMedCentralGoogle Scholar
  91. Vaisman N, Niv E, Izkhakov Y (2006) Catalytic amounts of fructose may improve glucose tolerance in subjects with uncontrolled non-insulin-dependent diabetes. Clin Nutr 25(4):617–621CrossRefPubMedPubMedCentralGoogle Scholar
  92. Van Schaftingen E, Davies DR (1991) Fructose administration stimulates glucose phosphorylation in the livers of anesthetized rats. FASEB J 5(3):326–330CrossRefPubMedPubMedCentralGoogle Scholar
  93. Vessal M, Hemmati M, Vasei M (2003) Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp Biochem Physiol Part C Toxicol Pharmacol 135(3):357–364CrossRefGoogle Scholar
  94. Vincent EE, Elder DJ, Curwen J, Kilgour E, Hers I, Tavaré JM (2013) Targeting non-small cell lung cancer cells by dual inhibition of the insulin receptor and the insulin-like growth factor-1 receptor. PLoS One 8(6):e66963CrossRefPubMedPubMedCentralGoogle Scholar
  95. Wang H, Cao G, Prior RL (1996) Total antioxidant capacity of fruits. J Agric Food Chem 44(3):701–705CrossRefGoogle Scholar
  96. White, J. W. (1980). Honey composition and properties, Beekeeping in the United States Agriculture Handbook Number 335Google Scholar
  97. White JW, Doner LW (1980) Honey composition and properties. Beekeep US Agric 335:82–91Google Scholar
  98. Wright EM, Hirayama BA, Loo DF (2007) Active sugar transport in health and disease. J Intern Med 261(1):32–43CrossRefPubMedPubMedCentralGoogle Scholar
  99. Xu M, Hu J, Zhao W, Gao X, Jiang C, Liu K, Liu B, Huang F (2014) Quercetin differently regulates insulin-mediated glucose transporter 4 translocation under basal and inflammatory conditions in adipocytes. Mol Nutr Food Res 58(5):931–941CrossRefPubMedPubMedCentralGoogle Scholar
  100. Yaghoobi, N., Al-Waili, N., Ghayour-Mobarhan, M., Parizadeh, S. M. R., Abasalti, Z., Yaghoobi, Z., . & Saloom, K. Y. (2008). Natural honey and cardiovascular risk factors; effects on blood glucose, cholesterol, triacylglycerole, CRP, and body weight compared with sucrose. Sci World J, 8, 463–469CrossRefGoogle Scholar
  101. Youn JH, Kaslow HR, Bergman RN (1987) Fructose effect to suppress hepatic glycogen degradation. J Biol Chem 262(24):11470–11477PubMedPubMedCentralGoogle Scholar
  102. Zhang Y, Liu D (2011) Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur J Pharmacol 670(1):325–332CrossRefPubMedPubMedCentralGoogle Scholar
  103. Zhang Z, Ding Y, Dai X, Wang J, Li Y (2011) Epigallocatechin-3-gallate protects pro-inflammatory cytokine induced injuries in insulin-producing cells through the mitochondrial pathway. Eur J Pharmacol 670(1):311–316CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Visweswara Rao Pasupuleti
    • 1
    Email author
  • Chandra Sekhar Arigela
    • 2
  1. 1.Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health SciencesUniversiti Malaysia SabahKota KinabaluMalaysia
  2. 2.Faculty of Agrobased IndustryUniversiti Malaysia KelantanJeliMalaysia

Personalised recommendations