Advertisement

IoT Data Validation Using Spatial and Temporal Correlations

  • Fabio SartoriEmail author
  • Riccardo Melen
  • Fabio Giudici
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1057)

Abstract

The Internet of Things (IoT) is the extension of Internet connectivity to physical devices and everyday objects. These devices composed by sensors, software and network connectivity can acquire, store and exchange data among them over the Internet. One of the main tasks of an IoT system consists in the continuous exchange of data and information of various kinds. The correctness of the value produced by the sensor is a crucial factor for the operation and reliability of the entire IoT system. This paper presents a centralized data validation algorithm which attempts to use spatial and temporal correlations to compensate for error on the data.

Keywords

Internet of Things Wireless sensor networks Data validation Information fusion Spatial and temporal correlation Wireless sensor networks kNN algorithm Wearable devices 

References

  1. 1.
    Fawzy, A., Mokhtar, H.M., Hegazy, O.: Outliers detection and classification in wireless sensor networks. Egypt. Inform. J. 14(2), 157–164 (2013)CrossRefGoogle Scholar
  2. 2.
    Branisavljević, N., Kapelan, Z., Prodanović, D.: Improved real-time data anomaly detection using context classification. J. Hydroinformatics 13, 307–323 (2011)CrossRefGoogle Scholar
  3. 3.
    Brownlee, J.: A tour of machine learning algorithms. Mach. Learn. Mastery 1542, 33–36 (2013)Google Scholar
  4. 4.
    Sun, S., Bertrand-Krajewski, J.L.: On calibration data selection: the case of stormwater quality regression models. Environ. Model Softw. 35, 61–73 (2012)CrossRefGoogle Scholar
  5. 5.
    Mourad, M., Bertrand-Krajewski, J.L.: A method for automatic validation of long time series of data in urban hydrology. Water Sci. Technol. 45, 263–270 (2002)CrossRefGoogle Scholar
  6. 6.
    Qin, S.J., Li, W.: Detection, identification, and reconstruction of faulty sensors with maximized sensitivity. AIChE J. 45, 1963–1976 (1999)CrossRefGoogle Scholar
  7. 7.
    Olsson, G., Nielsen, M., Yuan, Z., Lynggaard-Jensen, A., Steyer, J.-P.: Instrumentation, control and automation in wastewater systems. Water Intell. Online 4, 9781780402680 (2015)CrossRefGoogle Scholar
  8. 8.
    Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 37, 233–243 (1991)CrossRefGoogle Scholar
  9. 9.
    Staroswiecki, M.: Intelligent sensors: a functional view. IEEE Trans. Ind. Inform. 1, 238–249 (2005)CrossRefGoogle Scholar
  10. 10.
    Ibargiengoytia, P.H., Sucar, L.E., Vadera, S.: Real time intelligent sensor validation. IEEE Trans. Power Syst. 16, 770–775 (2001)CrossRefGoogle Scholar
  11. 11.
    Srivastava, S., Singh, M., Gupta, S.: Wireless sensor network: a survey. In: 2018 International Conference on Automation and Computational Engineering, ICACE 2018, pp. 159–163. Institute of Electrical and Electronics Engineers Inc. (2019).  https://doi.org/10.1109/icace.2018.8687059
  12. 12.
    Ruiz-Garcia, L., Lunadei, L., Barreiro, P., Robla, J.I.: A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends. Sensors (Switzerland) 9, 4728–4750 (2009)CrossRefGoogle Scholar
  13. 13.
    Zonta, D., et al.: Wireless sensor networks for permanent health monitoring of historic buildings. Smart Struct. Syst. 6, 595–618 (2010)CrossRefGoogle Scholar
  14. 14.
    Durisic, M.P., Tafa, Z., Dimic, G., Milutinovic, V.: A survey of military applications of wireless sensor networks. In: Mediterranean Conference on Embedded Computing (MECO), pp. 196–199 (2012)Google Scholar
  15. 15.
    Ko, J., et al.: Wireless sensor networks for healthcare. Proc. IEEE 98, 1947–1960 (2010)CrossRefGoogle Scholar
  16. 16.
    Pan, L., Li, J.: K-nearest neighbor based missing data estimation algorithm in wireless sensor networks. Wirel. Sens. Netw. 02, 115–122 (2010)CrossRefGoogle Scholar
  17. 17.
    Wilks, D.S.: Cluster analysis. Int. Geophys. 100, 603–616 (2011)CrossRefGoogle Scholar
  18. 18.
    Madden, S.: Intel Lab Data (2004). http://db.csail.mit.edu/labdata/labdata.html
  19. 19.
    Mollanoori, M., Hormati, M.M., Charkari, N.M.: An online prediction framework for sensor networks. In: 16th Iranian Conference on Electrical Engineering (2008)Google Scholar
  20. 20.
    Sartori, F., Melen, R.: An infrastructure for wearable environments acquisition and representation. In: Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 371–372. ACM (2019)Google Scholar
  21. 21.
    Can, A., Guillaume, G., Picaut, J.: Cross-calibration of participatory sensor networks for environmental noise mapping. Appl. Acoust. 110, 99–109 (2016)CrossRefGoogle Scholar
  22. 22.
    Tran, B.H., Bouju, A., Plumejeaud-Perreau, C., Bretagnolle, V.: Towards a semantic framework for exploiting heterogeneous environmental data. Int. J. Metadata Semant. Ontol. 11(3), 191–205 (2016)CrossRefGoogle Scholar
  23. 23.
    Andrade, A.T.C., Montez, C., Moraes, R., Pinto, A.R., Vasques, F., da Silva, G.L.: Outlier detection using k-means clustering and lightweight methods for wireless sensor networks. In: IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 4683–4688. IEEE (2016)Google Scholar
  24. 24.
    Wang, Z.M., Song, G.H., Gao, C.: An isolation-based distributed outlier detection framework using nearest neighbor ensembles for wireless sensor networks. IEEE Access 7, 96319–96333 (2019)CrossRefGoogle Scholar
  25. 25.
    Melen, R., Sartori, F., Grazioli, L.: Modeling and understanding time-evolving scenarios. In: Proceedings of the 19th World Multiconference on Systemics, Cybernetics and Informatics (WMSCI 2015), vol. I, pp. 267–271 (2015)Google Scholar
  26. 26.
    Sartori, F., Melen, R.: Wearable expert system development: definitions, models and challenges for the future. Program 51(3), 235–258 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Informatics, Systems and CommunicationUniversity of Milano-BicoccaMilanItaly

Personalised recommendations