Advertisement

Extending Faceted Search with Automated Object Ranking

  • Kostas Manioudakis
  • Yannis TzitzikasEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1057)

Abstract

Faceted Search is a widely used interaction scheme in digital libraries, e-commerce, and recently also in Linked Data. Nevertheless, object ranking in the context of Faceted Search is not well studied. In this paper we propose an extended version of the model enriched with parameters that enable specifying the characteristics of the sought object ranking. Then we provide an algorithm for producing an object ranking that satisfies these parameters. For doing so various sources are exploited including preferences and statistical properties of the dataset. Finally we present an implementation of the model, the GUI extensions that were required, as well as simulation-based evaluation results that provide evidence about the reduction of the user’s cost.

Notes

Acknowledgement

This work was partially supported by the project AI4EU (EU H2020, Grant agreement No 825619).

References

  1. 1.
    Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated ranking of database query results. In: Proceedings of CIDR (2003)Google Scholar
  2. 2.
    Basu Roy, S., et al.: Minimum-effort driven dynamic faceted search in structured databases. In: Proceedings of the 17th CIKM. ACM (2008) Google Scholar
  3. 3.
    van Belle, A.: Learning to rank for faceted search: bridging the gap between theory and practice (2017). https://berlinbuzzwords.de/sites/berlinbuzzwords.de/files/media/documents/bb2017.pdf
  4. 4.
    Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilistic ranking of database query results. In: Proceedings of the Thirtieth VLDB (2004)Google Scholar
  5. 5.
    Li, C., et al.: Facetedpedia: Dynamic generation of query-dependent faceted interfaces for wikipedia. In: Proceedings of the 19th ICWWW. ACM (2010)Google Scholar
  6. 6.
    Dakka, W., Ipeirotis, P., Wood, K.: Automatic construction of multifaceted browsing interfaces. In: Proceedings of the 14th CIKM (2005)Google Scholar
  7. 7.
    Hahn, R., et al.: Faceted wikipedia search. In: Abramowicz, W., Tolksdorf, R. (eds.) BIS 2010. LNBIP, vol. 47, pp. 1–11. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12814-1_1CrossRefGoogle Scholar
  8. 8.
    Harth, A.: VisiNav: Visual web data search and navigation. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 214–228. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03573-9_17CrossRefGoogle Scholar
  9. 9.
    Liu, T.Y.: Learning to rank for information retrieval. Found. Trends Inf. Retrieval 3(3), 225–331 (2009)CrossRefGoogle Scholar
  10. 10.
    Moreno-Vega, J., Hogan, A.: GraFa: Scalable faceted browsing for RDF graphs. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 301–317. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00671-6_18CrossRefGoogle Scholar
  11. 11.
    Papadakos, P., Tzitzikas, Y.: Hippalus: Preference-enriched faceted exploration. In: EDBT/ICDT Workshops, vol. 172 (2014)Google Scholar
  12. 12.
    Papangelis, A., Papadakos, P., Stylianou, Y., Tzitzikas, Y.: Spoken dialogue for information navigation. In: SIGDial (2018)Google Scholar
  13. 13.
    Pivert, O., Slama, O., Thion, V.: SPARQL Extensions with Preferences: a Survey. In: ACM Symposium on Applied Computing (2016)Google Scholar
  14. 14.
    Sacco, G.M., Tzitzikas, Y. (eds.): Dynamic Taxonomies and Faceted Search: Theory, Practice, and Experience. The Information Retrieval Series, vol. 25. Springer, Berlin (2009).  https://doi.org/10.1007/978-3-642-02359-0CrossRefGoogle Scholar
  15. 15.
    Troumpoukis, A., Konstantopoulos, S., Charalambidis, A.: An extension of SPARQL for expressing qualitative preferences. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 711–727. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68288-4_42CrossRefGoogle Scholar
  16. 16.
    Tunkelang, D.: Faceted search. Synthesis lectures on information concepts, retrieval, and services (2009)Google Scholar
  17. 17.
    Tzitzikas, Y., Dimitrakis, E.: Preference-enriched faceted search for voting aid applications. IEEE Trans. Emerg. Top. Comput. 7(2), 218–229 (2019)CrossRefGoogle Scholar
  18. 18.
    Tzitzikas, Y., Manolis, N., Papadakos, P.: Faceted exploration of RDF/S datasets: a survey. J. Intell. Inf. Syst. 48(2), 329–364 (2017)CrossRefGoogle Scholar
  19. 19.
    Tzitzikas, Y., Papadakos, P.: Interactive exploration of multidimensional and hierarchical information spaces with real-time preference elicitation. Fundamenta Informaticae 20, 1–42 (2012)zbMATHGoogle Scholar
  20. 20.
    Vandic, D., et al.: Dynamic facet ordering for faceted product search engines. IEEE Trans. Knowl. Data Eng. 29(5), 1004–1016 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Computer ScienceFORTHHeraklionGreece
  2. 2.Computer Science DepartmentUniversity of CreteHeraklionGreece

Personalised recommendations