Advertisement

Metadata-Driven Semantic Coordination

  • Manuel Fiorelli
  • Armando StellatoEmail author
  • Tiziano Lorenzetti
  • Peter Schmitz
  • Enrico Francesconi
  • Najeh Hajlaoui
  • Brahim Batouche
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1057)

Abstract

Reuse and combination of disparate datasets on the Semantic Web require semantic coordination, i.e. the ability to match heterogeneous semantic models. Systematic evaluations raised the performance of matching systems in terms of compliance and resource consumption. However, it is equally important to be able to identify diverse matching scenarios, covering a range of variations in the datasets such as different modeling languages, heterogeneous lexicalizations, structural differences and to be able to properly handle these scenarios through dedicated techniques and the exploitation of external resources. Furthermore, this should be achieved without requiring manual tinkering of low-level configuration knobs. As of the Semantic Web vision, machines should be able to coordinate and talk to each other to solve problems. To that end, we propose a system that automates most decisions by leveraging explicit metadata regarding the datasets to be matched and potentially useful support datasets. This system uses established metadata vocabularies such as VoID, Dublin Core and the LIME module of OntoLex-Lemon. Consequently, the system can work on real-world cases, leveraging metadata already published alongside self-describing datasets.

Keywords

Ontology matching Metadata OntoLex-Lemon 

Notes

Acknowledgements

This work has been drafted under the 2016.16 action of the ISA2 Programme (https://ec.europa.eu/isa2).

References

  1. 1.
    Berners-Lee, T., Hendler, J.A., Lassila, O.: The Semantic Web: A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities. Sci. Am. 284(5), 34–43 (2001)CrossRefGoogle Scholar
  2. 2.
    Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intell. Syst. 21(3), 96–101 (2006)CrossRefGoogle Scholar
  3. 3.
    Berners-Lee, T.: Linked data. In: Design Issues. https://www.w3.org/DesignIssues/LinkedData.html. Accessed 2006
  4. 4.
    Wiederhold, G.: Interoperation, mediation and ontologies. In: Proceedings International Symposium on Fifth Generation Computer Systems (FGCS 1994), Workshop on Heterogeneous Cooperative Knowledge Bases, Tokyo, Japan, pp. 33–48 (1994)Google Scholar
  5. 5.
    Madhavan, J., et al.: Web-scale data integration: you can only afford to pay as you go. In: Proceedings of CIDR 2007, pp. 342–350 (2007)Google Scholar
  6. 6.
    Halevy, A., Franklin, M., Maier, D.: Principles of dataspace systems. In: Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 1–9 (2006)Google Scholar
  7. 7.
    Heath, T., Bizer, C.: Linked data: evolving the web into a global data space. Synth. Lect. Semant. Web: Theory Technol. 1(1), 1–136 (2011)Google Scholar
  8. 8.
    Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38721-0zbMATHCrossRefGoogle Scholar
  9. 9.
    Euzenat, J., Shvaiko, P.: Classifications of ontology matching techniques. In: Ontology Matching, pp. 61–72. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-49612-0_4
  10. 10.
    Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)CrossRefGoogle Scholar
  11. 11.
    Fiorelli, M., Pazienza, M.T., Stellato, A.: A meta-data driven platform for semi-automatic configuration of ontology mediators. In: Calzolari, N., et al. (eds.) Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC 2014), Reykjavik, Iceland, May 2014Google Scholar
  12. 12.
    Stellato, A.: A language-aware web will give us a bigger and better semantic web. In: Proceedings of the 4th Workshop on the Multilingual Semantic Web, co-located with the 12th Extended Semantic Web Conference – ESWC 2015, Portoroz, Slovenia (2015)Google Scholar
  13. 13.
    Stellato, A., et al.: Towards VocBench 3: pushing collaborative development of thesauri and ontologies further beyond. In: Mayr, P., Tudhope, D., Golub, K., Wartena, C., De Luca, E.W. (eds.) 17th European Networked Knowledge Organization Systems (NKOS) Workshop. Thessaloniki, Greece, 21 September 2017, pp. 39–52 (2017)Google Scholar
  14. 14.
    Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: a dynamic multistrategy ontology alignment framework. IEEE Trans. Knowl. Data Eng. 21(8), 1218–1232 (2009)CrossRefGoogle Scholar
  15. 15.
    Mochol, M., Jentzsch, A.: Towards a rule-based matcher selection. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS, vol. 5268, pp. 109–119. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87696-0_12CrossRefGoogle Scholar
  16. 16.
    Cruz, I.F., Fabiani, A., Caimi, F., Stroe, C., Palmonari, M.: Automatic configuration selection using ontology matching task profiling. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 179–194. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30284-8_19CrossRefGoogle Scholar
  17. 17.
    Tartir, S., Arpinar, I.B.: Ontology evaluation and ranking using OntoQA. In: International Conference on Semantic Computing (ICSC 2007), pp. 185–192. IEEE (2007)Google Scholar
  18. 18.
    Faria, D., Pesquita, C., Santos, E., Cruz, I.F., Couto, F.M.: Automatic background knowledge selection for matching biomedical ontologies. PLoS ONE 9(11), 1–9 (2014)CrossRefGoogle Scholar
  19. 19.
    Mascardi, V., Locoro, A., Rosso, P.: Automatic ontology matching via upper ontologies: a systematic evaluation. IEEE Trans. Knowl. Data Eng. 22(5), 609–623 (2010)CrossRefGoogle Scholar
  20. 20.
    Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology alignment for linked open data. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 402–417. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17746-0_26CrossRefGoogle Scholar
  21. 21.
    Hertling, S., Paulheim, H.: WikiMatch: using wikipedia for ontology matching. In: Proceedings of the 7th International Conference on Ontology Matching, vol. 946, pp. 37–48 (2012)Google Scholar
  22. 22.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. WordNet Pointers. MIT Press, Cambridge (1998)zbMATHCrossRefGoogle Scholar
  23. 23.
    Bond, F., Paik, K.: A survey of WordNets and their licenses. In: Proceedings of the 6th Global WordNet Conference (GWC 2012), Matsue, Japan, 9–13 January 2012, pp. 64–71 (2012)Google Scholar
  24. 24.
    Chiarcos, C., Nordhoff, S., Hellmann, S. (eds.): Linked Data in Linguistics. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28249-2CrossRefGoogle Scholar
  25. 25.
    McCrae, J.P., Bosque-Gil, J., Gracia, J., Buitelaar, P., Cimiano, P.: The OntoLex-Lemon model: development and applications. In: Kosem, I., Tiberius, C., Jakubíček, M., Kallas, J., Krek, S., Baisa, V. (eds.) Electronic Lexicography in the 21st Century. Proceedings of eLex 2017 Conference, pp. 587–597 (2017)Google Scholar
  26. 26.
    Sabou, M., d’Aquin, M., Motta, E.: Exploring the semantic web as background knowledge for ontology matching. In: Spaccapietra, S., et al. (eds.) Journal on Data Semantics XI. LNCS, vol. 5383, pp. 156–190. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-92148-6_6CrossRefGoogle Scholar
  27. 27.
    Quix, C., Roy, P., Kensche, D.: Automatic selection of background knowledge for ontology matching. In: Proceedings of the International Workshop on Semantic Web Information Management, pp. 5:1–5:7. ACM, New York (2011)Google Scholar
  28. 28.
    Hartung, M., Groß, A., Kirsten, T., Rahm, E.: Effective mapping composition for biomedical ontologies. In: Workshop on Semantic Interoperability in Medical Informatics (SIMI)Google Scholar
  29. 29.
    World Wide Web Consortium (W3C): Data Catalog Vocabulary (DCAT). In: World Wide Web Consortium (W3C). http://www.w3.org/TR/vocab-dcat/. Accessed 16 Jan 2014
  30. 30.
    Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets with the VoID Vocabulary (W3C Interest Group Note). In: World Wide Web Consortium (W3C). http://www.w3.org/TR/void/. Accessed 3 Mar 2011
  31. 31.
    Fiorelli, M., Stellato, A., McCrae, J.P., Cimiano, P., Pazienza, M.T.: LIME: the metadata module for OntoLex. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 321–336. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18818-8_20CrossRefGoogle Scholar
  32. 32.
    DCMI Usage Board: DCMI Metadata Terms. In: Dublin Core Metadata Initiative (DCMI). http://dublincore.org/documents/dcmi-terms/. Accessed 14 June 2012
  33. 33.
    Enea, R., Pazienza, M.T., Turbati, A.: GENOMA: GENeric ontology matching architecture. In: Gavanelli, M., Lamma, E., Riguzzi, F. (eds.) AI*IA 2015. LNCS, vol. 9336, pp. 303–315. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24309-2_23CrossRefGoogle Scholar
  34. 34.
    David, J., Euzenat, J., Scharffe, F., Trojahn dos Santos, C.: The alignment API 4.0. Semant. Web J. 2(1), 3–10 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Enterprise EngineeringUniversity of Rome Tor VergataRomeItaly
  2. 2.Publications Office of the European UnionLuxembourgLuxembourg

Personalised recommendations