Advertisement

Predictive Data Transformation Suggestions in Grafterizer Using Machine Learning

  • Saliha Sajid
  • Bjørn Marius von Zernichow
  • Ahmet SoyluEmail author
  • Dumitru Roman
Conference paper
  • 273 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1057)

Abstract

Data preprocessing is a crucial step in data analysis. A substantial amount of time is spent on data transformation tasks such as data formatting, modification, extraction, and enrichment, typically making it more convenient for users to work with systems that can recommend most relevant transformations for a given dataset. In this paper, we propose an approach for generating relevant data transformation suggestions for tabular data preprocessing using machine learning (specifically, the Random Forest algorithm). The approach is implemented for Grafterizer, a Web-based framework for tabular data cleaning and transformation, and evaluated through a usability study.

Keywords

Data preprocessing Data transformation Transformation suggestions 

Notes

Acknowledgements

The work in this paper was partly funded by the EC H2020 projects euBusinessGraph (Grant nr. 732003), EW-Shopp (Grant nr. 732590), and TheyBuyForYou (Grant nr. 780247).

References

  1. 1.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  2. 2.
    Brooke, J.: SUS-A quick and dirty usability scale. In: Usability Evaluation in Industry, vol. 189, no. 194, pp. 4–7 (1996)Google Scholar
  3. 3.
    van Capelleveen, G., Amrit, C., Yazan, D.M., Zijm, H.: The recommender canvas: a model for developing and documenting recommender system design. Expert Syst. Appl. 129, 97–117 (2019)CrossRefGoogle Scholar
  4. 4.
    Chu, X., Morcos, J., Ilyas, I.F., Ouzzani, M., Papotti, P., et al.: Katara: a data cleaning system powered by knowledge bases and crowdsourcing. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD 2015), pp. 1247–1261 (2015)Google Scholar
  5. 5.
    Dallachiesa, M., Ebaid, A., Eldawy, A., Elmagarmid, A., et al.: NADEEF: a commodity data cleaning system. In: Proceedings of the ACM SIGMOD International Conference on Management of Datav (SIGMOD 2013), pp. 541–552 (2013)Google Scholar
  6. 6.
    Famili, A., Shen, W.M., Weber, R., et al.: Data preprocessing and intelligent data analysis. Intell. Data Anal. 1(1–4), 3–23 (1997)CrossRefGoogle Scholar
  7. 7.
    Heer, J., Hellerstein, J.M., Kandel, S.: Predictive interaction for data transformation. In: Proceedings of the 7th Biennial Conference on Innovative Data Systems Research (CIDR 2015) (2015)Google Scholar
  8. 8.
    Kandel, S., Paepcke, A., Hellerstein, J.M., Heer, J.: Enterprise data analysis and visualization: an interview study. IEEE Trans. Visual Comput. Graphics 18(12), 2917–2926 (2012)CrossRefGoogle Scholar
  9. 9.
    Melville, P., Sindhwani, V.: Recommender systems. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning and Data Mining, pp. 1056–1066. Springer, Boston (2017).  https://doi.org/10.1007/978-1-4899-7687-1CrossRefGoogle Scholar
  10. 10.
    Oshiro, T.M., Perez, P.S., Baranauskas, J.A.: How many trees in a random forest? In: Perner, P. (ed.) MLDM 2012. LNCS (LNAI), vol. 7376, pp. 154–168. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31537-4_13CrossRefGoogle Scholar
  11. 11.
    Rahm, E., Do, H.H.: Data cleaning: problems and current approaches. IEEE Data Eng. Bull. 23(4), 3–13 (2000)Google Scholar
  12. 12.
    Raman, V., Hellerstein, J.M.: Potters wheel: an interactive framework for data cleaning and transformation. In: Proceedings of the 27th International Conference on Very Large Data Bases (VLDB 2001), pp. 381–390 (2001)Google Scholar
  13. 13.
    Rekatsinas, T., Chu, X., Ilyas, I.F., Ré, C.: Holoclean: holistic data repairs with probabilistic inference. Proc. VLDB Endow. 10(11), 1190–1201 (2017)CrossRefGoogle Scholar
  14. 14.
    Roman, D., et al.: DataGraft: simplifying open data publishing. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 101–106. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47602-5_21CrossRefGoogle Scholar
  15. 15.
    Roman, D., et al.: DataGraft: one-stop-shop for open data management. Semant. Web 9(4), 393–411 (2018)CrossRefGoogle Scholar
  16. 16.
    Sukhobok, D., et al.: Tabular data cleaning and linked data generation with Grafterizer. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 134–139. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47602-5_27CrossRefGoogle Scholar
  17. 17.
    von Zernichow, B.M., Roman, D.: Usability of visual data profiling in data cleaning and transformation. In: Panetto, H., et al. (eds.) OTM 2017. LNCS, vol. 10574, pp. 480–496. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69459-7_32CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Saliha Sajid
    • 1
    • 2
  • Bjørn Marius von Zernichow
    • 2
  • Ahmet Soylu
    • 2
    Email author
  • Dumitru Roman
    • 1
    • 2
  1. 1.University of OsloOsloNorway
  2. 2.SINTEF ASOsloNorway

Personalised recommendations