Advertisement

Coupling of PDE and ODE Solvers in INMOST Parallel Platform: Application to Electrophysiology

  • Alexey Chernyshenko
  • Alexander Danilov
  • Vasily KramarenkoEmail author
Conference paper
  • 362 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1129)

Abstract

Mathematical modeling of cardiac electrophysiology is one of important and widely developing problems in personalized medicine. In this paper we present numerical simulations of electrophysiology in a human heart ventricles using high performance computing. For cardiac electrophysiology equations monodomain model is used. This PDE problem is discretized by P1 finite elements with the first order accurate implicit time scheme. Ionic currents are described by system of ODEs from O’Hara–Rudy model, provided by CellML model repository. The whole problem is solved using the CVODE solver, Ani3D and INMOST platforms. Efficiency in numerical simulations on high performance systems is almost 50% on 192 cores.

Keywords

Cardiac electrophysiology High performance computing O’Hara-Rudy model Monodomain model 

Notes

Acknowledgements

The research was supported by RFBR grants 17-01-00886 and 18-00-01524 (18-00-01661).

References

  1. 1.
    Hindmarsh, A.C., et al.: SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31, 363–396 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Yu, T., et al.: The physiome model repository 2. Bioinformatics 27, 743–744 (2011)CrossRefGoogle Scholar
  3. 3.
    Mirams, G., et al.: Chaste: an open source C++ library for computational physiology and biology. PLOS Comput. Biol. 9(3), e1002970 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Trayanova, N.A.: Whole-heart modeling. Circ. Res. 108(1), 113–128 (2011)CrossRefGoogle Scholar
  5. 5.
    Vázquez, M., et al.: Alya red CCM: HPC-based cardiac computational modelling. In: Klapp, J., Ruíz Chavarría, G., Medina Ovando, A., López Villa, A., Sigalotti, L. (eds.) Selected Topics of Computational and Experimental Fluid Mechanics. ESE, pp. 189–207. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-11487-3_11CrossRefGoogle Scholar
  6. 6.
    CardioSolv Ablation Technologies. https://www.cardiosolv.com/. Accessed 15 Apr 2019
  7. 7.
    A popular open-source (LGPLv3) computing platform for solving partial differential equations (PDEs). https://fenicsproject.org. Accessed 15 Apr 2019
  8. 8.
    Chernyshenko, A., Danilov, A., Vassilevski, Y.: Numerical simulations for cardiac electrophysiology problems. In: Mondaini, R. (ed.) BIOMAT 2018. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-23433-1_21CrossRefGoogle Scholar
  9. 9.
    O’Hara, T., Virág, L., Varró, A., Rudy, Y.: Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput. Biol. 7, e1002061 (2011)CrossRefGoogle Scholar
  10. 10.
    Ani3D (Advanced Numerical Instruments 3D). https://sourceforge.net/projects/ani3d/. Accessed 15 Apr 2019
  11. 11.
    INMOST (Integrated Numerical Modelling and Object-oriented Supercomputing Technologies). http://inmost.org/. Accessed 15 Apr 2019
  12. 12.
    PETSc – library for lineat system solving. https://www.mcs.anl.gov/petsc/. Accessed 15 Apr 2019
  13. 13.
    Kramarenko, V., Vassilevsky, Y., Konshin, I.: Ani3D extension of parallel platform Inmost and hydrodynamic applications. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2017, vol. 793. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71255-0_17CrossRefGoogle Scholar
  14. 14.
    CGAL – The Computational Geometry Algorithms Library. https://cgal.org/. Accessed 15 Apr 2019
  15. 15.
    ParMETIS – Parallel Graph Partitioning and Fill-reducing Matrix Ordering. http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
  16. 16.
    INM RAS cluster. http://cluster2.inm.ras.ru/. Accessed 15 Apr 2019
  17. 17.
    Bayer, J., Blake, R., Plank, G., Trayanova, N.: A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann. Biomed. Eng. 40(10), 2243–2254 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexey Chernyshenko
    • 1
    • 2
  • Alexander Danilov
    • 1
    • 2
    • 3
  • Vasily Kramarenko
    • 1
    • 3
    Email author
  1. 1.Marchuk Institute of Numerical Mathematics of the Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Inistitute of Physics and TechnologyDolgoprudnyRussia
  3. 3.Sechenov UniversityMoscowRussia

Personalised recommendations