Mechanical Properties of Boron Nitride Nanosheets (BNNSs) Reinforced Si3N4 Composites

  • Guandong Liang
  • Jianqiang BiEmail author
  • Guoxun Sun
  • Yafei Chen
  • Weili Wang
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


The boron nitride nanosheets (BNNSs)/silicon nitride (Si3N4) composite ceramics were prepared by SPS sintering. BNNSs with few layers and transverse size in micron-scale were prepared by ball-milling and ultrasound-assisted liquid-phase stripping. In this work, it was found that the BNNSs prepared by these two methods could enhance the mechanical properties of silicon nitride ceramics, and of BNNSs/Si3N4 composite ceramics exhibit better bending strength when adding the ultrasound-assisted liquid-phase stripping BNNSs. The bending strength and fracture toughness of BNNSs/Si3N4 composite ceramics was increased by 36% and 51%, respectively, when 2 wt% BNNSs prepared by ball-milling method were added. The pullout of BNNSs, the bridging of cracks, and the deflection of cracks are the main factors of improving the toughness.


Boron nitride nanosheets BNNSs/Si3N4 composite ceramics Mechanical properties 


  1. 1.
    Rafiee MA, Rafiee J, Wang Z et al (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12):3884CrossRefGoogle Scholar
  2. 2.
    Liu Y, Wu H, Chen G (2016) Enhanced mechanical properties of nanocomposites at low graphene content based on in situ ball milling. Polym Compos 37(4):1190–1197CrossRefGoogle Scholar
  3. 3.
    Wang K, Wang Y, Fan Z, Yan J, Wei T (2011) Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Mater Res Bull 46:315–318CrossRefGoogle Scholar
  4. 4.
    Lee B, Lee D, Lee JH et al (2016) Enhancement of toughness and wear resistance in boron nitride nanoplatelet (BNNP) reinforced Si3N4 nanocomposites. Sci Rep 6:27609CrossRefGoogle Scholar
  5. 5.
    Sun G, Bi J, Wang W et al (2017) Microstructure and mechanical properties of boron nitride nanosheets-reinforced fused silica composites. J Eur Ceram Soc 37(9):3195–3202CrossRefGoogle Scholar
  6. 6.
    Shi G, Hanlumyuang Y, Liu Z et al (2014) Boron Nitride-Graphene Nanocapacitor and the origins of anomalous size-dependent increase of capacitance. Nano Lett 14(4):1739–1744CrossRefGoogle Scholar
  7. 7.
    Li LH, Cervenka J, Watanabe K, Taniguchi T, Chen Y (2014) Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 8:1457–1462CrossRefGoogle Scholar
  8. 8.
    Riley FL (2000) Silicon nitride and related materials. J Am Ceram Soc 83:245–265CrossRefGoogle Scholar
  9. 9.
    Bocanegra-Bernal MH, Matovic B (2010) Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures. Mater Sci Eng A 527:1314–1338CrossRefGoogle Scholar
  10. 10.
    Wang Z, Jia J, Cao L et al (2019) Microstructure and mechanical properties of spark plasma sintered Si3N4/WC ceramic tools. Materials 12(11):1868CrossRefGoogle Scholar
  11. 11.
    Miranzo P, Jesús González-Julián, María Isabel Osendi et al (2011) Enhanced particle rearrangement during liquid phase spark plasma sintering of silicon nitride-based ceramics. Ceram Int 37(1):159–166Google Scholar
  12. 12.
    Lei W, Liu D, Chen Y (2015) Highly crumpled boron nitride nanosheets as adsorbents: scalable solvent-less production. Adv Mater Interfaces 2:1400529–1400534CrossRefGoogle Scholar
  13. 13.
    Li LH, Chen Y, Behan G et al (2011) Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball Milling. J Mater Chem 21:11862–11867CrossRefGoogle Scholar
  14. 14.
    Ma P, Spencer JT (2014) Non-covalent stabilization and functionalization of boron nitride nanosheets (BNNSs) by organic polymers: formation of complex BNNSs-containing structures. J Mater Sci 50:313–323CrossRefGoogle Scholar
  15. 15.
    Gao G, Gao W, Cannuccia E et al (2012) Artificially stacked atomic layers: toward new van der waals solids. Nano Lett 12:3518–3525CrossRefGoogle Scholar
  16. 16.
    Zhi C, Bando Y, Tang C et al (2009) Large scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv Mater 21:2889–2893CrossRefGoogle Scholar
  17. 17.
    Muller F, Hufner S, Sachdev H et al (2010) Epitaxial growth of hexagonal boron nitride on Ag (111). Phys Rev B 82:113406–113409CrossRefGoogle Scholar
  18. 18.
    Zhou KG, Mao NN, Wang HX, Peng Y, Zhang HL (2011) A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew Chem Int Ed 50:10839–10842CrossRefGoogle Scholar
  19. 19.
    Kumar A, Gokhale A, Ghosh S et al (2019) Effect of nano-sized sintering additives on microstructure and mechanical properties of Si3N4 ceramics. Mater Sci Eng A 750:132–140CrossRefGoogle Scholar
  20. 20.
    Chen YF, Bi JQ, Wang WL et al (2014) Toughening in boron nitride nanotubes/silicon nitride composites. Mater Sci Eng A 590:16–20CrossRefGoogle Scholar
  21. 21.
    Chen C, Pan L, Li X et al (2017) Mechanical and thermal properties of graphene nanosheets/magnesia composites. Ceram Int 43(13):10377–10385CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  • Guandong Liang
    • 1
    • 2
  • Jianqiang Bi
    • 1
    • 2
    Email author
  • Guoxun Sun
    • 1
    • 2
  • Yafei Chen
    • 1
    • 2
  • Weili Wang
    • 1
    • 2
  1. 1.Key Laboratory for Liquid–Solid Structure Evolution and Processing of MaterialsMinistry of Education, Shandong UniversityJinanChina
  2. 2.Engineering Ceramics Key Laboratory of Shandong ProvinceShandong UniversityJinanChina

Personalised recommendations