Advertisement

Continuous EEG Monitoring: Systems of Care

  • Sahar F. Zafar
  • Shravan Sivakumar
  • Eric S. RosenthalEmail author
Chapter
  • 35 Downloads
Part of the Current Clinical Neurology book series (CCNEU)

Abstract

This chapter reviews the indications and practical aspects of continuous electroencephalogram (cEEG) monitoring in the intensive care unit (ICU). cEEG monitoring can be performed for diagnostic, prognostic, and therapeutic indications. For example, it can be used to detect and monitor for nonconvulsive seizures, ischemia, electrocerebral silence, and depth of sedation as well as characterize paroxysmal events that are not clearly epileptogenic. In addition, cEEG can be used to help predict outcomes, particularly in patients who have suffered anoxic brain injury. Successful implementation of cEEG monitoring in a Neurosciences ICU (NCCU) necessitates both daytime and off-hours support. Different models may be used with regard to EEG technologist staffing, but temporary EEG systems are available that can be placed on a short-term, emergent basis if necessary. Duration of cEEG monitoring depends upon each patient’s clinical scenario. The American Clinical Neurophysiology Society has published guidelines in order to standardize EEG reporting. Finally, every successful cEEG monitoring service requires a multidisciplinary collaborative approach in order to optimize patient care.

Keywords

Electroencephalogram Seizure Intensive care unit American Clinical Neurophysiology Society Quantitative EEG 

References

  1. 1.
    Oddo M, et al. Continuous electroencephalography in the medical intensive care unit. Crit Care Med. 2009;37(6):2051–6.CrossRefGoogle Scholar
  2. 2.
    Claassen J, et al. Electrographic seizures and periodic discharges after intracerebral hemorrhage. Neurology. 2007;69(13):1356–65.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kurtz P, et al. Continuous electroencephalography in a surgical intensive care unit. Intensive Care Med. 2014;40(2):228–34.CrossRefGoogle Scholar
  4. 4.
    Claassen J, et al. Prognostic significance of continuous EEG monitoring in patients with poor-grade subarachnoid hemorrhage. Neurocrit Care. 2006;4(2):103–12.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Herman ST, et al. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. J Clin Neurophysiol. 2015;32(2):87–95.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Ney JP, et al. Continuous and routine EEG in intensive care: utilization and outcomes, United States 2005–2009. Neurology. 2013;81(23):2002–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    DeLorenzo RJ, et al. Persistent nonconvulsive status epilepticus after the control of convulsive status epilepticus. Epilepsia. 1998;39(8):833–40.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Claassen J, et al. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology. 2004;62(10):1743–8.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Brophy GM, et al. Guidelines for the evaluation and management of status epilepticus. Neurocrit Care. 2012;17(1):3–23.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Rodriguez Ruiz A, et al. Association of periodic and rhythmic electroencephalographic patterns with seizures in critically ill patients. JAMA Neurol. 2017;74(2):181–8.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Foreman B, Claassen J. Quantitative EEG for the detection of brain ischemia. Crit Care. 2012;16(2):216.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Vespa PM, et al. Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr Clin Neurophysiol. 1997;103(6):607–15.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Claassen J, et al. Quantitative continuous EEG for detecting delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage. Clin Neurophysiol. 2004;115(12):2699–710.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Rosenthal ES, et al. Continuous electroencephalography predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective study of diagnostic accuracy. Ann Neurol. 2018;83(5):958–69.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Machado C. Diagnosis of brain death. Neurol Int. 2010;2(1):e2.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Trinka E, et al. A definition and classification of status epilepticus – report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia. 2015;56(10):1515–23.CrossRefGoogle Scholar
  17. 17.
    O’Rourke D, et al. Response rates to anticonvulsant trials in patients with triphasic-wave EEG patterns of uncertain significance. Neurocrit Care. 2016;24(2):233–9.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Trinka E, et al. Pharmacotherapy for status epilepticus. Drugs. 2015;75(13):1499–521.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Picetti E, Iaccarino C, Servadei F. Letter: guidelines for the management of severe traumatic brain injury fourth edition. Neurosurgery. 2017;81(1):E2.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Rossetti AO, et al. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol. 2010;67(3):301–7.Google Scholar
  21. 21.
    Synek VM. Prognostically important EEG coma patterns in diffuse anoxic and traumatic encephalopathies in adults. J Clin Neurophysiol. 1988;5(2):161–74.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Young GB, Wang JT, Connolly JF. Prognostic determination in anoxic-ischemic and traumatic encephalopathies. J Clin Neurophysiol. 2004;21(5):379–90.PubMedPubMedCentralGoogle Scholar
  23. 23.
    American Clinical Neurophysiology, S. Guideline 3: minimum technical standards for EEG recording in suspected cerebral death. J Clin Neurophysiol. 2006;23(2):97–104.CrossRefGoogle Scholar
  24. 24.
    Gavvala J, et al. Continuous EEG monitoring: a survey of neurophysiologists and neurointensivists. Epilepsia. 2014;55(11):1864–71.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Struck AF, et al. Association of an electroencephalography-based risk score with seizure probability in hospitalized patients. JAMA Neurol. 2017;74(12):1419–24.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Laccheo I, et al. Non-convulsive status epilepticus and non-convulsive seizures in neurological ICU patients. Neurocrit Care. 2015;22(2):202–11.CrossRefGoogle Scholar
  27. 27.
    Abdulrahman Alwaki JAE, Rodriguez-Ruiz A. Staffing an ICU EEG monitoring unit. In: Laroche SM, Haider HA, editors. Handbook of ICU EEG monitoring. New York: Springer Publishing Company (Demos Medical); 2018.Google Scholar
  28. 28.
    Herman ST, et al. Consensus statement on continuous EEG in critically ill adults and children, part II: personnel, technical specifications, and clinical practice. J Clin Neurophysiol. 2015;32(2):96–108.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Mesraoua B, et al. Clinical presentation, epidemiology, neurophysiological findings, treatment and outcome of nonconvulsive status epilepticus: a 3-year prospective, hospital-based study. J Drug Assess. 2017;6(1):18–32.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Cascino GD. Video-EEG monitoring in adults. Epilepsia. 2002;43(s3):80–93.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Velis D, et al. Recommendations regarding the requirements and applications for long-term recordings in epilepsy. Epilepsia. 2007;48(2):379–84.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Kubota Y, et al. Continuous EEG monitoring in ICU. J Intensive Care. 2018;6:39.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Westover MB, et al. The probability of seizures during EEG monitoring in critically ill adults. Clin Neurophysiol. 2015;126(3):463–71.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Wittman JJ Jr, Hirsch LJ. Continuous electroencephalogram monitoring in the critically ill. Neurocrit Care. 2005;2(3):330–41.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Young GB, Doig GS. Continuous EEG monitoring in comatose intensive care patients: epileptiform activity in etiologically distinct groups. Neurocrit Care. 2005;2(1):5–10.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    O’Connor KL, et al. High risk for seizures following subarachnoid hemorrhage regardless of referral bias. Neurocrit Care. 2014;21(3):476–82.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Rathakrishnan R, et al. Using continuous electroencephalography in the management of delayed cerebral ischemia following subarachnoid hemorrhage. Neurocrit Care. 2011;14(2):152–61.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Muniz CF, et al. Clinical development and implementation of an institutional guideline for prospective EEG monitoring and reporting of delayed cerebral ischemia. J Clin Neurophysiol. 2016;33(3):217–26.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Leitinger M, et al. Diagnostic accuracy of the Salzburg EEG criteria for non-convulsive status epilepticus: a retrospective study. Lancet Neurol. 2016;15(10):1054–62.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Glauser T, et al. Evidence-based guideline: treatment of convulsive status epilepticus in children and adults: report of the guideline committee of the American Epilepsy Society. Epilepsy Curr. 2016;16(1):48–61.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Gururangan K, Razavi B, Parvizi J. Utility of electroencephalography: experience from a U.S. tertiary care medical center. Clin Neurophysiol. 2016;127(10):3335–40.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kolls BJ, et al. Electroencephalography leads placed by nontechnologists using a template system produce signals equal in quality to technologist-applied, collodion disk leads. J Clin Neurophysiol. 2012;29(1):42–9.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Ladino LD, et al. StatNet Electroencephalogram: a fast and reliable option to diagnose nonconvulsive status epilepticus in emergency setting. Can J Neurol Sci. 2016;43(2):254–60.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kamousi B, et al. Comparing the quality of signals recorded with a rapid response EEG and conventional clinical EEG systems. Clin Neurophysiol Pract. 2019;4:69–75.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Parvizi J, et al. Detecting silent seizures by their sound. Epilepsia. 2018;59(4):877–84.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Acharya JN, et al. American clinical neurophysiology society guideline 3: a proposal for standard montages to be used in clinical EEG. Neurodiagn J. 2016;56(4):253–60.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Guideline twelve: guidelines for long-term monitoring for epilepsy. J Clin Neurophysiol. 1994;11(1):88–110.Google Scholar
  48. 48.
    Young GB, et al. Seizure detection with a commercially available bedside EEG monitor and the subhairline montage. Neurocrit Care. 2009;11(3):411.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Gururangan K, Razavi B, Parvizi J. Diagnostic utility of eight-channel EEG for detecting generalized or hemispheric seizures and rhythmic periodic patterns. Clin Neurophysiol Pract. 2018;3:65–73.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Tanner AE, et al. Application of subhairline EEG montage in intensive care unit: comparison with full montage. J Clin Neurophysiol. 2014;31(3):181–6.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Labar DR, et al. Quantitative EEG monitoring for patients with subarachnoid hemorrhage. Electroencephalogr Clin Neurophysiol. 1991;78(5):325–32.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Bridgers SL, Ebersole JS. EEG outside the hairline. Neurology. 1988;38(1):146.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Karakis I, et al. A quick and reliable EEG montage for the detection of seizures in the critical care setting. J Clin Neurophysiol. 2010;27(2):100–5.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Kolls BJ, Husain AM. Assessment of hairline EEG as a screening tool for nonconvulsive status epilepticus. Epilepsia. 2007;48(5):959–65.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Tallgren P, et al. Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clin Neurophysiol. 2005;116(4):799–806.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Ives JR. New chronic EEG electrode for critical/intensive care unit monitoring. J Clin Neurophysiol. 2005;22(2):119–23.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Young GB, et al. A comparison of subdermal wire electrodes with collodion-applied disk electrodes in long-term EEG recordings in ICU. Clin Neurophysiol. 2006;117(6):1376–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Lesser RP, Crone NE, Webber WRS. Subdural electrodes. Clin Neurophysiol. 2010;121(9):1376–92.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Claassen J, Vespa P. Electrophysiologic monitoring in acute brain injury. Neurocrit Care. 2014;21(Suppl 2):S129–47.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Waziri A, et al. Intracortical electroencephalography in acute brain injury. Ann Neurol. 2009;66(3):366–77.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Tsetsou S, et al. EEG reactivity to pain in comatose patients: importance of the stimulus type. Resuscitation. 2015;97:34–7.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Johnsen B, et al. The nature of EEG reactivity to light, sound, and pain stimulation in neurosurgical comatose patients evaluated by a quantitative method. Clin EEG Neurosci. 2017;48(6):428–37.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    ASET Position statement on skin safety during EEG procedures – a guideline to improving outcome. Neurodiagn J. 2016;56(4):296–300.Google Scholar
  64. 64.
    Moura LMVR, et al. cEEG electrode-related pressure ulcers in acutely hospitalized patients. Neurol Clin Pract. 2017;7(1):15–25.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Joellan M, Morton W. Preventing skin breakdown in EEG patients: best practice techniques. J Pediatr Nurs. 2014;29(5):478–80.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Sinha SR, et al. American Clinical Neurophysiology Society guideline 1: minimum technical requirements for performing clinical electroencephalography. J Clin Neurophysiol. 2016;33(4):303–7.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Lau RR, et al. Neurotelemetry electrode application techniques compared. Am J Electroneurodiagnostic Technol. 2011;51(3):165–82.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Hirsch LJ, et al. American Clinical Neurophysiology Society’s standardized critical care EEG terminology: 2012 version. J Clin Neurophysiol. 2013;30(1):1–27.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Struck AF, et al. Metabolic correlates of the Ictal-interictal continuum: FDG-PET during continuous EEG. Neurocrit Care. 2016;24(3):324–31.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Vespa P, et al. Metabolic crisis occurs with seizures and periodic discharges after brain trauma. Ann Neurol. 2016;79(4):579–90.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Witsch J, et al. Electroencephalographic periodic discharges and frequency-dependent brain tissue hypoxia in acute brain injury. JAMA Neurol. 2017;74(3):301–9.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Moura LM, et al. Spectrogram screening of adult EEGs is sensitive and efficient. Neurology. 2014;83(1):56–64.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Haider HA, et al. Sensitivity of quantitative EEG for seizure identification in the intensive care unit. Neurology. 2016;87(9):935–44.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Bricolo A, et al. Clinical application of compressed spectral array in long-term EEG monitoring of comatose patients. Electroencephalogr Clin Neurophysiol. 1978;45(2):211–25.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Boylan G, et al. An international survey of EEG use in the neonatal intensive care unit. Acta Paediatr. 2010;99(8):1150–5.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Ponnusamy V, et al. Current availability of cerebral function monitoring and hypothermia therapy in UK neonatal units. Arch Dis Child Fetal Neonatal Ed. 2010;95(5):F383.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    de Vries LS, Hellström-Westas L. Role of cerebral function monitoring in the newborn. Arch Dis Child Fetal Neonatal Ed. 2005;90(3):F201–7.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Stewart CP, et al. Seizure identification in the ICU using quantitative EEG displays. Neurology. 2010;75(17):1501–8.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Boylan GB, Stevenson NJ, Vanhatalo S. Monitoring neonatal seizures. Semin Fetal Neonatal Med. 2013;18(4):202–8.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Suk D, et al. Amplitude-integrated electroencephalography in the NICU: frequent artifacts in premature infants may limit its utility as a monitoring device. Pediatrics. 2009;123(2):e328–32.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Goenka A, Boro A, Yozawitz E. Comparative sensitivity of quantitative EEG (QEEG) spectrograms for detecting seizure subtypes. Seizure. 2018;55:70–5.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Goenka A, Boro A, Yozawitz E. Assessing quantitative EEG spectrograms to identify non-epileptic events. Epileptic Disord. 2017;19(3):299–306.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Sheorajpanday RVA, et al. Reproducibility and clinical relevance of quantitative EEG parameters in cerebral ischemia: a basic approach. Clin Neurophysiol. 2009;120(5):845–55.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Brandon Westover M, et al. Real-time segmentation of burst suppression patterns in critical care EEG monitoring. J Neurosci Methods. 2013;219(1):131–41.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Simmons LE, et al. Assessing sedation during intensive care unit mechanical ventilation with the Bispectral Index and the Sedation-Agitation Scale. Crit Care Med. 1999;27(8):1499–504.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Prichep LS, et al. The Patient State Index as an indicator of the level of hypnosis under general anaesthesia. Br J Anaesth. 2004;92(3):393–9.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Bauerle K, et al. Prediction of depth of sedation and anaesthesia by the Narcotrend EEG monitor. Br J Anaesth. 2004;92(6):841–5.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Sviri GE, et al. Time course for autoregulation recovery following severe traumatic brain injury. J Neurosurg. 2009;111(4):695–700.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Newey CR, Gupta V, Ardelt AA. Monitoring pressure augmentation in patients with ischemic penumbra using continuous electroencephalogram: three cases and a review of the literature. Neurohospitalist. 2017;7(4):179–87.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Newey CR, Sarwal A, Hantus S. Continuous electroencephalography (cEEG) changes precede clinical changes in a case of progressive cerebral edema. Neurocrit Care. 2013;18(2):261–5.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Vespa PM, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35(12):2830–6.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Tatum WO, et al. American Clinical Neurophysiology Society guideline 7: guidelines for EEG reporting. J Clin Neurophysiol. 2016;33(4):328–32.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Abend NS, et al. Use of EEG monitoring and management of non-convulsive seizures in critically ill patients: a survey of neurologists. Neurocrit Care. 2010;12(3):382–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Abend NS, et al. Electroencephalographic monitoring in the pediatric intensive care unit. Curr Neurol Neurosci Rep. 2013;13(3):330.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sahar F. Zafar
    • 1
  • Shravan Sivakumar
    • 1
  • Eric S. Rosenthal
    • 1
    Email author
  1. 1.Divisions of Neurocritical Care and Clinical Neurophysiology, Department of NeurologyMassachusetts General HospitalBostonUSA

Personalised recommendations