Advertisement

Fluid Structure Modelling of Ground Excited Vibrations by Mesh Morphing and Modal Superposition

  • A. Martinez-Pascual
  • Marco Evangelos Biancolini
  • J. Ortega-CasanovaEmail author
Conference paper
  • 20 Downloads
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 92)

Abstract

This paper presents a numerical approach for high fidelity modelling of ground excited vibrations of a structure interacting with surrounding fluid flow. The motion of the structure is represented directly on the CFD model mesh by embedding the structural modes using radial basis functions mesh morphing. Modal forces integrals are computed on the CFD mesh enabling a time marching FSI solution based on the weak approach. Ground vibration is represented by adding a rigid movement and related inertial loads using modal participation factors. The approach is validated by studying a cantilever beam vibrating in air excited by a transversal sine motion applied to the clamped end that is relevant for the design of flapping devices. Numerical results are successfully validated by comparing the coupled and uncoupled response computed according to the proposed approach with the analytic one and to a standard FEA solver.

Notes

Acknowledgements

This research has been partially supported by the Ministerio de Economía y Competitividad of Spain Grants No. DPI2016-76151-C2-1-R and by the European Union within the RIBES project of the 7th Framework aeronautics programme JTI-CS-GRA (Joint Technology Initiatives-Clean Sky-Green Regional Aircraft) under Grant 632556.

References

  1. 1.
    Piperno, S., & Farhat, C. (2001). Partitioned procedures for the transient solution of coupled aeroelastic problems—Part II: Energy transfer analysis and three-dimensional applications. Computer Methods in Applied Mechanics and Engineering, 190(24), 3147–3170.  https://doi.org/10.1016/S0045-7825(00)00386-8.ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Keye, S. (2009). Fluid-structure-coupled analysis of a transport aircraft and comparison to flight data. In: 39th AIAA Fluid Dynamics Conference, , San Antonio, TX, USA 22–25 June 2009.  https://doi.org/10.2514/6.2009-4198.
  3. 3.
    Biancolini, M. E., Cella, U., Groth, C., & Genta, M. (2016). Static aeroelastic analysis of an aircraft wind-tunnel model by means of modal RBF mesh updating. Journal of Aerospace Engineering, 29(6), 04016061.  https://doi.org/10.1061/(ASCE)AS.1943-5525.0000627.CrossRefGoogle Scholar
  4. 4.
    Cella, U., & Biancolini, M. E. (2012). Aeroelastic analysis of aircraft wind-tunnel model coupling structural and fluid dynamic codes. AIAA Journal of Aircraft, 49(2), 407–414.  https://doi.org/10.2514/1.C031293.CrossRefGoogle Scholar
  5. 5.
    Papoutsis-Kiachagias, E. M., Andrejas̆ic̆, M., Porziani, S., Groth, C., Erz̆en, D., Biancolini, M. E., Costa, E., & Giannakoglou, K. C. (2016). Combining an RBF-based morpher with continuous adjoint for low-speed aeronautical optimization applications. In: ECCOMAS Congress, Crete Island, Greece, 5–10 June 2016.  https://doi.org/10.7712/100016.2270.15521.
  6. 6.
    Biancolini, M. E., Viola, I. M., & Riotte, M. (2014). Sails trim optimisation using CFD and RBF mesh morphing. Computers & Fluids, 93, 46–60.  https://doi.org/10.1016/j.compfluid.2014.01.007.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Biancolini, M. E., Chiappa, A., Giorgetti, F., Groth, C., Cella, U., & Salvini, P. (2018). A balanced load mapping method based on radial basis functions and fuzzy sets. International Journal for Numerical Methods in Engineering, 115(12), 1411–1429.  https://doi.org/10.1002/nme.5850.ADSCrossRefGoogle Scholar
  8. 8.
    Groth, C., Costa, E., & Biancolini, M. E. (2019). RBF-based mesh morphing approach to perform icing simulations in the aviation sector. Aircraft Engineering and Aerospace Technology, 91(4), 620–633.  https://doi.org/10.1108/AEAT-07-2018-0178.CrossRefGoogle Scholar
  9. 9.
    Chiappa, A., Groth, C., & Biancolini, M. E. (2019). Improvement of 2D finite element analysis stress results by radial basis functions and balance equations. International Journal of Mechanics, 13, 90–99.Google Scholar
  10. 10.
    Reina, G., Della-Sala, A., Biancolini, M. E., Groth, C., & Caridi, D.: Store separation: Theoretical investigation of wing aeroelastic response. In Aircraft Structural Design Conference, Belfast, Northern Ireland, 7–9 October 2014.Google Scholar
  11. 11.
    Di Domenico, N., Groth, C., Wade, A., Berg, T., & Biancolini, M. E. (2018). Fluid structure interaction analysis: Vortex shedding induced vibrations. Procedia Structural Integrity, 8, 422–432.  https://doi.org/10.1016/j.prostr.2017.12.042.CrossRefGoogle Scholar
  12. 12.
    Groth, C., Cella, U., Costa, E., & Biancolini, M. E. (2019). Fast high fidelity CFD/CSM fluid structure interaction using RBF mesh morphing and modal superposition method. Aircraft Engineering and Aerospace Technology journal, 91(6), 893–904.  https://doi.org/10.1108/AEAT-09-2018-0246.CrossRefGoogle Scholar
  13. 13.
    Hoover, A. P., Cortez, R., Tytell, E. D., & Fauci, L. J. (2018). Swimming performance, resonance and shape evolution in heaving flexible panels. Journal of Fluid Mechanics, 847, 386–416.  https://doi.org/10.1017/jfm.2018.305.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Martín-Alcántara, A., Fernández-Feria, R., & Sanmiguel-Rojas, E. (2015). Vortex flow structures and interactions for the optimum thrust efficiency of a heaving airfoil at different mean angles of attack. Physics of Fluids, 27(7), 073602.  https://doi.org/10.1063/1.4926622.ADSCrossRefGoogle Scholar
  15. 15.
    Wang, Z. J. (2000). Vortex shedding and frequency selection in flapping flight. Journal of Fluid Mechanics, 410, 323–341.  https://doi.org/10.1017/S0022112099008071.ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Wang, Z. J., Birch, J. M., & Dickinson, M. H. (2004). Unsteady forces and flows in low Reynolds number hovering flight: Two-dimensional computations vs robotic wing experiments. Journal of Experimental Biology, 207(3), 449–460.  https://doi.org/10.1242/jeb.00739.CrossRefGoogle Scholar
  17. 17.
    van den Berg, C., & Ellington, C. P. (1997). The three-dimensional leading-edge vortex of a hovering model hawkmoth. Philosophical Transactions of the Royal Society B. Biological Sciences, 352, 329–340.  https://doi.org/10.1098/rstb.1997.0024.ADSCrossRefGoogle Scholar
  18. 18.
    Harbig, R. R., Sheridan, J., & Thompson, M. C. (2013). Relationship between aerodynamic forces, flow structures and wing camber for rotating insect wing planforms. Journal of Fluid Mechanics, 730, 52–75.  https://doi.org/10.1017/jfm.2013.335.ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Sane, S. P., & Dickinson, M. H. (2002). The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. Journal of Experimental Biology, 205(8), 1087–1096.Google Scholar
  20. 20.
    Birch, J. M., & Dickinson, M. H. (2003). The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight. Journal of Experimental Biology, 206(13), 2257–2272.  https://doi.org/10.1242/jeb.00381.CrossRefGoogle Scholar
  21. 21.
    Combes, S. A. (2010). Materials, structure, and dynamics of insect wings as bioinspiration for MAVs. In Encyclopedia of Aerospace Engineering, Chap. 3. American Cancer Society.  https://doi.org/10.1002/9780470686652.eae404
  22. 22.
    Combes, S. A., & Daniel, T. L. (2003). Flexural stiffness in insect wings I. Scaling and the influence of wing venation. Journal of Experimental Biology, 206(17), 2979–2987.  https://doi.org/10.1242/jeb.00523.CrossRefGoogle Scholar
  23. 23.
    Combes, S. A., & Daniel, T. L. (2003). Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. Journal of Experimental Biology, 206(17), 2989–2997.  https://doi.org/10.1242/jeb.00524.CrossRefGoogle Scholar
  24. 24.
    Koehler, C., Wischgoll, T., Dong, H., & Gaston, Z. (2011). Vortex visualization in ultra low Reynolds number insect flight. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2071–2079.  https://doi.org/10.1109/TVCG.2011.260.CrossRefGoogle Scholar
  25. 25.
    Du, G., & Sun, M. (2010). Effects of wing deformation on aerodynamic forces in hovering hoverflies. Journal of Experimental Biology, 213(13), 2273–2283.  https://doi.org/10.1242/jeb.040295.CrossRefGoogle Scholar
  26. 26.
    Nakata, T., & Liu, H. (2012). A fluid-structure interaction model of insect flight with flexible wings. Journal of Computational Physics, 231(4), 1822–1847.  https://doi.org/10.1016/j.jcp.2011.11.005.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hua, R. N., Zhu, L., & Lu, X. Y. (2013). Locomotion of a flapping flexible plate. Physics of Fluids, 25(12), 121901.  https://doi.org/10.1063/1.4832857.ADSCrossRefGoogle Scholar
  28. 28.
    Baudille, R., & Biancolini, M. E. (2015, January). FSI makes FLUENT more flexible. Fluent News, 14.Google Scholar
  29. 29.
    Baudille, R., & Biancolini, M. E. (2008). A general approach for studying the motion of a cantilever beam interacting with a 2D fluid flow. Interaction and Multiscale Mechanics, 1(4), 449–465.  https://doi.org/10.12989/imm.2008.1.4.449.CrossRefGoogle Scholar
  30. 30.
    Sigrist, J. F., & Garreau, S. (2007). Dynamic analysis of fluid-structure interaction problems with modal methods using pressure-based fluid finite elements. Finite Element in Design and Analysis, 43(4), 287–300.  https://doi.org/10.1016/j.finel.2006.10.002.CrossRefGoogle Scholar
  31. 31.
    Meirovitch, L. (2001). Fundamentals of vibration. New York: McGraw-Hill.CrossRefGoogle Scholar
  32. 32.
    de Boer, A., van der Schoot, M. S., & Bijl, H. (2007). Mesh deformation based on radial basis function interpolation. Computers and Structures, 85(11–14), 794–795.  https://doi.org/10.1016/j.compstruc.2007.01.013.CrossRefGoogle Scholar
  33. 33.
    Lodha, S. K., & Franke, R. (2002). Scattered data interpolation: Radial basis and other methods. In G. Farin, J. Hoschek, & M.-S. Kim (Eds.), Handbook of computer aided geometric design (pp. 389–401). North Holland: Elsevier.CrossRefGoogle Scholar
  34. 34.
    Biancolini, M. E. (2017). Fast radial basis functions for engineering applications. Cham: Springer International Publishing.  https://doi.org/10.1007/978-3-319-75011-8.CrossRefzbMATHGoogle Scholar
  35. 35.
    Olivier, M., & Dumas, G. (2016). A parametric investigation of the propulsion of 2D chordwise-flexible flapping wings at low Reynolds number using numerical simulations. Journal of Fluids and Structures, 63, 210–237.  https://doi.org/10.1016/j.jfluidstructs.2016.03.010.ADSCrossRefGoogle Scholar
  36. 36.
    Ortega-Casanova, J., & Fernandez-Feria, R. (2016). Analysis of the aerodynamic interaction between two plunging plates in tandem at low Reynolds number for maximum propulsive efficiency. Journal of Fluids and Structures, 63, 351–373.  https://doi.org/10.1016/j.jfluidstructs.2016.03.011.ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • A. Martinez-Pascual
    • 1
  • Marco Evangelos Biancolini
    • 2
  • J. Ortega-Casanova
    • 1
    Email author
  1. 1.Escuela de Ingenierías IndustrialesUniversidad de MálagaMalagaSpain
  2. 2.University of Rome “Tor Vergata”RomeItaly

Personalised recommendations