Advertisement

Aero-elastic Simulations Using the NSMB CFD Solver Including results for a Strut Braced Wing Aircraft

  • J. B. VosEmail author
  • D. Charbonnier
  • T. Ludwig
  • S. Merazzi
  • H. Timmermans
  • D. Rajpal
  • A. Gehri
Conference paper
  • 21 Downloads
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 92)

Abstract

More then 10 years ago a large investment was made in extending the NSMB Navier Stokes Multi Block (NSMB) Computational Fluid Dynamics (CFD) towards Fluid Structure Interaction (FSI) simulations (Guillaume et al. in Fluid structure interaction simulation on the F/A-18 vertical tail, 2010 [1], Guillaume et al. in Aeronaut J 115:285–294, 2011 [2]). At that time a segregated approach was adopted using a loosely coupled approach. More recently NSMB was coupled to the open-source Finite Element Analysis environment B2000++ (http://www.smr.ch/products/b2000/ [3]) in a strongly coupled approach. This has led to the possibility to perform both static and dynamic FSI simulations using either a modal or a FEM approach without the need to interrupt the simulation. Results of aero-elastic simulations for the MDO-aircraft, the AGARD445.6 wing and for a Strut Braced Wing configuration will be presented.

Notes

Acknowledgements

The research on the Strut Braced Wing configuration presented in this paper has been performed in the framework of the AGILE project (Aircraft 3rd Generation MDO for Innovative Collaboration of Heterogeneous Teams of Experts) and has received funding from the European Union Horizon 2020 Programme under grant agreement no. 636202. The Swiss participation in the AGILE project was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0162. The authors are grateful to the partners of the AGILE consortium for their contribution and feedback.

References

  1. 1.
    Guillaume M., Gehri A., Stephani P., Vos J., & Manadanis G. (2010). Fluid structure interaction simulation on the F/A-18 vertical tail. AIAA-2010-4613, Chicago.Google Scholar
  2. 2.
    Guillaume, M., Gehri, A., Stephani, P., Vos, J., & Mandanis, G. (2011). F/A-18 vertical buffeting calculations using unsteady fluid structure interaction. The Aeronautical Journal, 115(1166), 285–294.CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Haase, W., Selmin, V. and Winzell, B. (2003). Progress in computational fluid-structure interaction. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 81. Springer.Google Scholar
  5. 5.
    Yates, E. C., Jr. (1987). AGARD Standard aero-elastic configurations for dynamic response. I: Wing 445.6. AGARD R-765, 1988. Also published as NASA TM-100492.Google Scholar
  6. 6.
    Ciampa, P. D., & Nagel, B. (2018). AGILE the next generation of collaborative MDO: Achievements and open challenges. AIAA paper, 2018–3249.Google Scholar
  7. 7.
    de C. Henshaw, M. J., Badcock, K. J., Vio, G. A., Allen C. B, Chamberlain, J., Kaynes, I., et al. (2007). Non-linear aeroelastic prediction for aircraft applications. Progress in Aerospace Sciences, 43.Google Scholar
  8. 8.
    Afonso, F., Vale, J., Oliveira, E., Lau, F., & Suleman, A. (2017). A review on non-linear aeroelasticity of high aspect-ratio wings. Progress in Aerospace Sciences, 89, 40–57.ADSCrossRefGoogle Scholar
  9. 9.
    Mian, H. H., Wang, G., & Ye, Z.-Y. (2014). Numerical investigation of structural geometric nonlinearity effect in high-aspect-ratio wing using CFD/CSD coupling approach. Journal Fluids Structures, 49, 186–201.ADSCrossRefGoogle Scholar
  10. 10.
    Vos, J. B., Rizzi, A. W., Corjon, A., Chaput, E., & Soinne, E. (1998). Recent advances in aerodynamics inside the NSMB (Navier-Stokes Multiblock) consortium. AIAA paper, 98–0225.Google Scholar
  11. 11.
    Vos, J. B., Sanchi, S., & Gehri, A. (2013). Drag prediction workshop 4 results using different grids including near-field/far-field drag analysis. Journal of Aircraft, 50(5), 1616–1627.CrossRefGoogle Scholar
  12. 12.
    Vos, J. B., Bourgoing, A., Soler, J., & Rey, B. (2015). Earth re-entry capsule CFD simulations taking into account surface roughness and mass injection at the wall. International Journal of Aerodynamics, 5(1), 1–33.CrossRefGoogle Scholar
  13. 13.
    Hoarau, Y., Pena, D., Vos, J. B., Charbonnier, D., Gehri, A., Braza, M., et al. (2016). Recent developments of the Navier Stokes Multi Block (NSMB) CFD solver. AIAA Paper, 2016–2056.Google Scholar
  14. 14.
    Spalart, P. R., & Allmaras, S. R. (1992). A one-equation turbulence model for aerodynamic flows. AIAA Paper, 92–0439.Google Scholar
  15. 15.
    Menter, F. R. (1993). Zonal two equation \(k-\omega \) turbulence models for aerodynamic flows. AIAA paper, 93–2906.Google Scholar
  16. 16.
    Langtry, R., & Menter, F. (2009). Correlation-based transition modeling for unstructured parallized computational fluid dynamic codes. AIAA Journal, 47, 2894–2907.ADSCrossRefGoogle Scholar
  17. 17.
    Hounjet, M. H. L., & Meijer, J. J. (1995). Evaluation of elastomechanical and aerodynamic data transfer methods for non-planar configurations in computational aeroelastic analysis (pp. 18–19). TP 95690U, National Aerospace Laboratory NLR, Amsterdam, The Netherlands.Google Scholar
  18. 18.
    Beckert, A. (1997). Ein Beitrag zur Strömungs-Struktur-Kopplung für die Berechnung des aeroelastischen Gleichgewichtszustandes, Forschungsbericht-Deutsches Zentrum für Luft und Raumfahrt.Google Scholar
  19. 19.
    Spekreijse, S. P., Prananta, B. B., & Kok, J. C. (2002). A simple , robust and fast algorithm to compute deformations of multi-block structured grids. NLR-TP-2002-105.Google Scholar
  20. 20.
    Goura, G. S. L. (2001). Time marching analysis of flutter using computational fluid dynamics. Ph.D. thesis, University of Glasgow.Google Scholar
  21. 21.
    Jameson, A. (1991, June). Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. AIAA Paper, 91–1596.Google Scholar
  22. 22.
    Torrigiani, F., Bussemaker, J., Ciampa, P. D., Fiorite, M., Tomasella, F., Aigner, B., et al. (2018). Design of the Strut Braced Wing Aircraft in the AGILE collaborative MDO framework. ICAS.Google Scholar
  23. 23.
    Werter, N. P. M., & De Breuker, R. (2016). A novel dynamic aeroelastic framework for aeroelastic tailoring and structural optimisation. Composite Structures, 158, 369–386.CrossRefGoogle Scholar
  24. 24.
    Werter, N. P. M., & De Breuker, R. (2017). Continuous-time state-space unsteady aerodynamic modeling for efficient loads analysis. AIAA Journal, 56(3), 905–916.ADSCrossRefGoogle Scholar
  25. 25.
    Hammer, V. B., Bendsøe, M. P., & Pedersen, P. (1997). Parametrization in laminate design for optimal compliance. International Journal of Solids and Structures, 34(4), 415–434.CrossRefGoogle Scholar
  26. 26.
    Gangadharan, R., Wu, Z., & Weaver, P. (2014). On further developments of feasible region of lamination parameters for symmetric composite laminates. In 55th AIAA/ASMe/ASCE/AHS/SC structures, structural dynamics, and materials conference.Google Scholar
  27. 27.
    Wu, Z., Gangadharan, R., & Weaver, P. (2015). Framework for the buckling optimization of variable-angle tow composite plates. AIAA Journal, 53(12), 3788–3804.ADSCrossRefGoogle Scholar
  28. 28.
    Khani, A., IJsselmuiden, S. T., Abdalla, M. M., & Gürdal, Z. (2011). Design of variable stiffness panels for maximum strength using lamination parameters. Composites Part B: Engineering, 42(3), 546–552.CrossRefGoogle Scholar
  29. 29.
    Dillinger, J. K. S., Klimmek, T., Abdalla, M. M., & Gürdal, Z. (2013). Stiffness optimization of composite wings with aeroelastic constraints. Journal of Aircraft, 50(4), 1159–1168.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • J. B. Vos
    • 1
    Email author
  • D. Charbonnier
    • 1
  • T. Ludwig
    • 2
  • S. Merazzi
    • 2
  • H. Timmermans
    • 3
  • D. Rajpal
    • 4
  • A. Gehri
    • 5
  1. 1.CFS EngineeringLausanneSwitzerland
  2. 2.SMR Engineering and DevelopmentBienneSwitzerland
  3. 3.NLR Netherlands Aerospace CentreBM AmsterdamThe Netherlands
  4. 4.Delft University of Technology Faculty of Aerospace EngineeringDelftThe Netherlands
  5. 5.Aerodynamics DepartmentRUAG AviationEmmenSwitzerland

Personalised recommendations