Structural Controllability and Observability Analysis in Complex Networks

  • Dániel LeitoldEmail author
  • Ágnes Vathy-Fogarassy
  • János Abonyi
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


This chapter introduces the reader to the network-based analysis of the controllability and observability of dynamical systems and draws attention to the importance of dynamics between the state variables.


Dynamical systems Controllability Observability Connection types Dynamic behaviour Network theory 


  1. 1.
    Broenink, J.F.: Introduction to physical systems modelling with bond graphs. SiE whitebook on simulation methodologies, 31 (1999)Google Scholar
  2. 2.
    Chen, W., Lu, W., Zhang, N.: Time-critical influence maximization in social networks with time-delayed diffusion process. In: Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)Google Scholar
  3. 3.
    Colizza, V., Barrat, A., Barthélemy, M., Vespignani, A.: The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Natl. Acad. Sci. 103(7), 2015–2020 (2006)CrossRefGoogle Scholar
  4. 4.
    Cowan, R., Jonard, N.: Network structure and the diffusion of knowledge. J. Econ. Dyn. Control 28(8), 1557–1575 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gates, A.J., Rocha, L.M.: Control of complex networks requires both structure and dynamics. Sci. Rep. 6, 24456 (2016)Google Scholar
  6. 6.
    Klamka, J., Niezabitowski, M.: Controllability of switched linear dynamical systems. In: 2013 18th International Conference on Methods & Models in Automation & Robotics (MMAR), pp. 464–467. IEEE (2013)Google Scholar
  7. 7.
    Leitold, D., Vathy-Fogarassy, Á., Abonyi, J.: Controllability and observability in complex networks mohana the effect of connection types. Sci. Rep. 7, 151 (2017)CrossRefGoogle Scholar
  8. 8.
    Li, M., Gao, H., Wang, J., Wu, F-X.: Control principles for complex biological networksli et al. control principles for biological networks. Briefings Bioinf. (2018)Google Scholar
  9. 9.
    Müller, F.-J., Schuppert, A.: Few inputs can reprogram biological networks. Nature 478(7369), E4 (2011)CrossRefGoogle Scholar
  10. 10.
    Sun, J., Cornelius, S.P., Kath, W.L., Motter, A.E.: Comment on controllability of complex networks with nonlinear dynamics (2011). arXiv:1108.5739
  11. 11.
    Weng, L., Flammini, A., Vespignani, A., Menczer, F.: Competition among memes in a world with limited attention. Sci. Rep. 2, 335 (2012)CrossRefGoogle Scholar
  12. 12.
    Lin, W., Li, M., Wang, J.-X., Fang-Xiang, W.: Controllability and its applications to biological networks. J. Comput. Sci. Technol. 34(1), 16–34 (2019)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zhang, X., Lv, T., Yang, X.Y., Zhang, B.: Structural controllability of complex networks based on preferential matching. PloS One 9(11), e112039 (2014)CrossRefGoogle Scholar
  14. 14.
    Zhao, C., Wang, W.-X., Liu, Y.-Y., Slotine, J.-J.: Intrinsic dynamics induce global symmetry in network controllability. Sci. Rep. 5, 8422 (2015)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer Science and Systems TechnologyUniversity of PannoniaVeszprémHungary
  2. 2.MTA-PE Lendület Complex Systems Monitoring Research GroupUniversity of PannoniaVeszprémHungary

Personalised recommendations