Advertisement

Introduction

  • Dániel LeitoldEmail author
  • Ágnes Vathy-Fogarassy
  • János Abonyi
Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

The application of network science in the field of dynamical systems has enabled a set of powerful tools that can be used for the analysis of dynamical properties of complex systems. In this chapter, the most important trends and applications of this novel approach are introduced.

Keywords

Dynamical systems Controllability Observability Maximum matching Network science Input configuration Output configuration Robustness 

References

  1. 1.
    Aguirre, L.A., Portes, L.L., Letellier, C.: Structural, dynamical and symbolic observability: from dynamical systems to networks. PloS One 13(10), e0206180 (2018)Google Scholar
  2. 2.
    Alwasel, B., Wolthusen, S.D.: Recovering structural controllability on erdős-rényi graphs via partial control structure re-use. In: International Conference on Critical Information Infrastructures Security, pp. 293–307. Springer (2014)Google Scholar
  3. 3.
    Badhwar, R., Bagler, G.: A distance constrained synaptic plasticity model of C. elegans neuronal network. Phys. A: Stat. Mech. Its Appl. 469, 313–322 (2017)Google Scholar
  4. 4.
    Baggio, R., Scott, N., Cooper, C.: Network science: A review focused on tourism. Ann. Tour. Res. 37(3), 802–827 (2010)Google Scholar
  5. 5.
    Bai, Y.-N., Wang, L., Chen, M.Z.Q., Huang, N.: Controllability emerging from conditional path reachability in complex networks. Int. J. Robust Nonlinear Control 27(18), 4919–4930 (2017)Google Scholar
  6. 6.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)Google Scholar
  7. 7.
    Caro-Ruiz, C., Pavas, A., Mojica-Nava, E.: Controllability criterion for random tree networks with application to power systems. In: 2016 IEEE Conference on Control Applications (CCA), pp. 137–142. IEEE (2016)Google Scholar
  8. 8.
    Chen, G.: Pinning control and controllability of complex dynamical networks. Int. J. Autom. Comput. 14(1), 1–9 (2017)Google Scholar
  9. 9.
    Chen, S.-M., Xu, Y.-F., Nie, S.: Robustness of network controllability in cascading failure. Phys. A: Stat. Mech. Its Appl. 471, 536–539 (2017)Google Scholar
  10. 10.
    Chen, X., Pequito, S., Pappas, G.J., Preciado, V.M.: Minimal edge addition for network controllability. IEEE Trans. Control Netw. Syst. (2018)Google Scholar
  11. 11.
    Chen, Y.-Z., Wang, L.-Z., Wang, W.-X., Lai, Y.-C.: Energy scaling and reduction in controlling complex networks. R. Soc. Open Sci. 3(4), 160064 (2016)Google Scholar
  12. 12.
    Ducruet, C., Beauguitte, L.: Spatial science and network science: review and outcomes of a complex relationship. Netw. Spat. Econ. 14(3–4), 297–316 (2014)Google Scholar
  13. 13.
    Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5(1), 17–60 (1960)Google Scholar
  14. 14.
    Estrada, E., Fox, M., Higham, D.J., Oppo, G.-L.: Network science: complexity in nature and technology. Springer Science & Business Media (2010)Google Scholar
  15. 15.
    Gao, X.-D., Shen, Z., Wang, W.-X.: Emergence of complexity in controlling simple regular networks. EPL (Eur. Lett.) 114(6), 68002 (2016)Google Scholar
  16. 16.
    Gao, X.-D., Wang, W.-X., Lai, Y.-C.: Control efficacy of complex networks. Sci. Rep. 6, 28037 (2016)Google Scholar
  17. 17.
    Gates, A.J., Rocha, L.M.: Control of complex networks requires both structure and dynamics. Sci. Rep. 6, 24456 (2016)Google Scholar
  18. 18.
    Gosak, M., Markovič, R., Dolenšek, J., Rupnik, M.S., Marhl, M., Stožer, A., Perc, M.: Network science of biological systems at different scales: a review. Phys. Life Rev. 24, 118–135 (2018)Google Scholar
  19. 19.
    Guo, W.-F., Zhang, S.-W., Liu, L.-L., Liu, F., Shi, Q.-Q., Zhang, L., Tang, Y., Zeng, T., Chen, L.: Discovering personalized driver mutation profiles of single samples in cancer by network control strategy. Bioinformatics 34(11), 1893–1903 (2018)Google Scholar
  20. 20.
    Guo, W.-F., Zhang, S.-W., Zeng, T., Li, Y., Gao, J., Chen, L.: A novel network control model for identifying personalized driver genes in cancer. bioRxiv, 503565 (2019)Google Scholar
  21. 21.
    Hu, Y., Chen, C.-H., Ding, Y.-Y., Wen, X., Wang, B., Gao, L., Tan, K.: Optimal control nodes in disease-perturbed networks as targets for combination therapy. Nat. Commun. 10(1), 2180 (2019)Google Scholar
  22. 22.
    Huang, W., Xi, Y., Xu, Y., Gan, Z.: Eliminating redundant driver nodes with structural controllability guarantee. In: 2017 36th Chinese Control Conference (CCC), pp. 347–352. IEEE (2017)Google Scholar
  23. 23.
    Kalman, R.E.: Mathematical description of linear dynamical systems. J. Soc. Ind. Appl. Math., Ser. A: Control. 1(2), 152–192 (1963)Google Scholar
  24. 24.
    Leitold, D., Vathy-Fogarassy, Á., Abonyi, J.: Controllability and observability in complex networks-the effect of connection types. Sci. Rep. 7(1), 151 (2017)Google Scholar
  25. 25.
    Leitold, D., Vathy-Fogarassy, A., Abonyi, J.: Design-oriented structural controllability and observability analysis of heat exchanger networks. Chem. Eng. Trans. 70, 595–600 (2018)Google Scholar
  26. 26.
    Leitold, D., Vathy-Fogarassy, A., Abonyi, J.: Network distance-based simulated annealing and fuzzy clustering for sensor placement ensuring observability and minimal relative degree. Sensors 18(9), 3096 (2018)Google Scholar
  27. 27.
    Letellier, C., Sendiña-Nadal, I., Bianco-Martinez, E., Baptista, M.S.: A symbolic network-based nonlinear theory for dynamical systems observability. Sci. Rep. 8(1), 3785 (2018)Google Scholar
  28. 28.
    Li, G., Deng, L., Xiao, G., Tang, P., Wen, C., Hu, W., Pei, J., Shi, L., Stanley, H.E.: Enabling controlling complex networks with local topological information. Sci. Rep. 8(1), 4593 (2018)Google Scholar
  29. 29.
    Li, J., Dueñas-Osorio, L., Chen, C., Berryhill, B., Yazdani, A.: Characterizing the topological and controllability features of us power transmission networks. Phys. A: Stat. Mech. Its Appl. 453, 84–98 (2016)Google Scholar
  30. 30.
    Li, M., Gao, H., Wang, J., Wu, F.-X.: Control principles for complex biological networksLi et al. Control principles for biological networks. Brief. Bioinform. (2018)Google Scholar
  31. 31.
    Li, X., Yao, P., Pan, Y.: Towards structural controllability of temporal complex networks. Complex Systems and Networks, pp. 341–371. Springer, Berlin (2016)Google Scholar
  32. 32.
    Lin, C.-T.: Structural controllability. IEEE Trans. Autom. Control 19(3), 201–208 (1974)Google Scholar
  33. 33.
    Lindmark, G., Altafini, C.: Minimum energy control for complex networks. Sci. Rep. 8(1), 3188 (2018)Google Scholar
  34. 34.
    Liu, Y.-Y., Barabási, A.-L.: Control principles of complex systems. Rev. Mod. Phys. 88(3), 035006 (2016)Google Scholar
  35. 35.
    Liu, Y.-Y., Slotine, J.-J., Barabási, A.-L.: Controllability of complex networks. Nature 473(7346), 167 (2011)Google Scholar
  36. 36.
    Liu, Yang-Yu., Slotine, Jean-Jacques, Barabási, Albert-László: Control centrality and hierarchical structure in complex networks. Plos one 7(9), e44459 (2012)Google Scholar
  37. 37.
    Liu, Y.-Y., Slotine, J.-J., Barabási, A.-L.: Observability of complex systems. Proc. Natl. Acad. Sci. 110(7), 2460–2465 (2013)Google Scholar
  38. 38.
    Lou, Y., Wang, L., Chen, G.: Toward stronger robustness of network controllability: a snapback network model. IEEE Trans. Circuits Syst. I: Regul. Pap. 65(9), 2983–2991 (2018)Google Scholar
  39. 39.
    Lu, Z.-M., Li, X.-F.: Attack vulnerability of network controllability. PloS One 11(9), e0162289 (2016)Google Scholar
  40. 40.
    Ming, X., Chuan-Yun, X., Ke-Fei, C.: Effect of degree correlations on controllability of undirected networks. Acta Phys. Sin. 66(2) (2017)Google Scholar
  41. 41.
    Mousavi, S.S., Haeri, M., Mesbahi, M.: On the structural and strong structural controllability of undirected networks. IEEE Trans. Autom. Control 63(7), 2234–2241 (2018)Google Scholar
  42. 42.
    Nie, S., Wang, X.-W., Wang, B.-H., Jiang, L.-L.: Effect of correlations on controllability transition in network control. Sci. Rep. 6, 23952 (2016)Google Scholar
  43. 43.
    Pang, S.-P., Hao, F.: Effect of interaction strength on robustness of controlling edge dynamics in complex networks. Phys. A: Stat. Mech. Its Appl. 497, 246–257 (2018)Google Scholar
  44. 44.
    Pang, S.-P., Wang, W.-X., Hao, F., Lai, Y.-C.: Universal framework for edge controllability of complex networks. Sci. Rep. 7(1), 4224 (2017)Google Scholar
  45. 45.
    Pei, H.-Q., Chen, S.-M.: Controllability of heterogeneous interdependent group systems under undirected and directed topology. Chin. Phys. B 27(10), 108901 (2018)Google Scholar
  46. 46.
    Ravindran, V., Sunitha, V., Bagler, G.: Controllability of human cancer signaling network. In: 2016 International Conference on Signal Processing and Communication (ICSC), pp. 363–367. IEEE (2016)Google Scholar
  47. 47.
    Ravindran, V., Sunitha, V., Bagler, G.: Identification of critical regulatory genes in cancer signaling network using controllability analysis. Phys. A: Stat. Mech. Its Appl. 474, 134–143 (2017)Google Scholar
  48. 48.
    Romero, O., Pequito, S.: Actuator placement for symmetric structural controllability with heterogeneous costs. IEEE Control Syst. Lett. 2(4), 821–826 (2018)Google Scholar
  49. 49.
    Siomau, M.: Any quantum network is structurally controllable by a single driving signal. Quantum Inf. Process. 18(1), 1 (2019)Google Scholar
  50. 50.
    Summers, T.H., Cortesi, F.L., Lygeros, J.: On submodularity and controllability in complex dynamical networks. IEEE Trans. Control Netw. Syst. 3(1), 91–101 (2016)Google Scholar
  51. 51.
    Sun, P.G., Ma, X.: Dominating communities for hierarchical control of complex networks. Inf. Sci. 414, 247–259 (2017)Google Scholar
  52. 52.
    Tahmassebi, A., Amani, A.M., Pinker-Domenig, K., Meyer-Baese, A.: Determining disease evolution driver nodes in dementia networks. In: Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging. International Society for Optics and Photonics, vol. 10578, p. 1057829 (2018)Google Scholar
  53. 53.
    Van Der Woude, J., Boukhobza, T., Commault, C.: On structural behavioural controllability of linear discrete time systems with delays. Syst. Control Lett. 119, 31–38 (2018)Google Scholar
  54. 54.
    Villasanti, H.G., Passino, K.M., Clapp, J.D., Madden, D.R.: A control-theoretic assessment of interventions during drinking events. IEEE Trans. Cybern. (2017)Google Scholar
  55. 55.
    Wang, J., Yu, X., Stone, L.: Effective augmentation of complex networks. Sci. Rep. 6, 25627 (2016)Google Scholar
  56. 56.
    Wang, L.-Z., Chen, Y.-Z., Wang, W.-X., Lai, Y.-C.: Physical controllability of complex networks. Sci. Rep. 7, 40198 (2017)Google Scholar
  57. 57.
    Wang, L., Bai, Y.-N., Chen, M.Z.Q.: Structural controllability analysis of complex networks. In: 2016 35th Chinese Control Conference (CCC), pp. 1225–1229. IEEE (2016)Google Scholar
  58. 58.
    Wang, L., Wang, L., Kong, Z.: Two controllable canonical forms for single input complex network. In: 2017 29th Chinese Control And Decision Conference (CCDC), pp. 1467–1472. IEEE (2017)Google Scholar
  59. 59.
    Wang, L., Chen, G., Wang, X., Tang, W.K.S.: Controllability of networked mimo systems. Automatica 69, 405–409 (2016)Google Scholar
  60. 60.
    Wang P., Wang D., Lu, J.: Controllability analysis of a gene network for arabidopsis thaliana reveals characteristics of functional gene families. IEEE/ACM Trans. Comput. Biol. Bioinform. (2018)Google Scholar
  61. 61.
    Wang S., Zhang J., Yue X.: Multiple robustness assessment method for understanding structural and functional characteristics of the power network. Phys. A: Stat. Mech. Its Appl. 510, 261–270 (2018)Google Scholar
  62. 62.
    Wang, W., Wan, Y., Liang, X.: State estimation for complex network with one step induced delay based on structural controllability and pinning control. In: Intelligent Computing, Networked Control, and Their Engineering Applications, pp. 575–584. Springer (2017)Google Scholar
  63. 63.
    Wang, X., Xi, Y., Huang, W., Jia, S.: Deducing complete selection rule set for driver nodes to guarantee network’s structural controllability. IEEE/CAA J. Autom. Sin. (2017)Google Scholar
  64. 64.
    Wang, X.-W., Jiang, G.-P., Wu, X.: Structural controllability of complex dynamical networks with nodes being multidimensional dynamics. In: American Control Conference (ACC), pp. 5013–5019. IEEE (2017)Google Scholar
  65. 65.
    Wu, L., Li, M., Wang, J.-X., Wu, F.-X.: Controllability and its applications to biological networks. J. Comput. Sci. Technol. 34(1), 16–34 (2019)Google Scholar
  66. 66.
    Wu, L., Li, M., Wang, J., Wu, F.-X.: Minimum steering node set of complex networks and its applications to biomolecular networks. IET Syst. Biol. 10(3), 116–123 (2016)Google Scholar
  67. 67.
    Wu, L., Tang, L., Li, M., Wang, J., Wu, F.-X.: The MSS of complex networks with centrality based preference and its application to biomolecular networks. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 229–234. IEEE (2016)Google Scholar
  68. 68.
    Yang, Y., Xie, G.: Mining maximum matchings of controllability of directed networks based on in-degree priority. In: 2016 35th Chinese Control Conference (CCC), pp. 1263–1267. IEEE (2016)Google Scholar
  69. 69.
    Yao, P., Li, C., Li, X.: The functional regions in structural controllability of human functional brain networks. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1603–1608. IEEE (2017)Google Scholar
  70. 70.
    Yin, H., Zhang, S.: Minimum structural controllability problems of complex networks. Phys. A: Stat. Mech. Its Appl. 443, 467–476 (2016)Google Scholar
  71. 71.
    Zañudo, J.G.T., Yang, G., Albert, R.: Structure-based control of complex networks with nonlinear dynamics. Proc. Natl. Acad. Sci. 114(28), 7234–7239 (2017)Google Scholar
  72. 72.
    Zhang, Z., Yin, Y., Zhang, X., Liu, L.: Optimization of robustness of interdependent network controllability by redundant design. PloS One 13(2), e0192874 (2018)Google Scholar
  73. 73.
    Zhao, C., Zeng, A., Jiang, R., Yuan, Z., Wang, W.-X.: Controllability of flow-conservation networks. Phys. Rev. E 96(1), 012314 (2017)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer Science and Systems TechnologyUniversity of PannoniaVeszprémHungary
  2. 2.MTA-PE Lendület Complex Systems Monitoring Research GroupUniversity of PannoniaVeszprémHungary

Personalised recommendations