Advertisement

Dynamic IFFSM Modeling Using IFHMM-Based Bayesian Non-parametric Learning for Energy Disaggregation in Smart Solar Home System

  • Kalthoum ZaoualiEmail author
  • Mohamed Lassaad Ammari
  • Amine Chouaieb
  • Ridha Bouallegue
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 303)

Abstract

Recently, the analysis and recognition of each appliance’s energy consumption are fundamental in smart homes and smart buildings systems. Our paper presents a novel Non-Intrusive Load Monitoring (NILM) recognition method based on Bayesian Non-Parametric (BNP) learning approach to solve the problem of energy disaggregation for smart Solar Home System (SHS). Several researches assumed that there is prior information about the household appliances in order to restrict those that do not hold the maximum expectation for inference. Therefore, to deal with the unknown number of electrical appliances in a SHS, we have adapted a dynamic Infinite Factorial Hidden Markov Model (IFHMM) -based Infinite Factorial Finite State Machine (IFFSM) to our NILM times-series modeling as an unsupervised BNP learning method. Our suggested method can grip with few or nappropriate learning data as well as to standardize electrical appliance modeling. Our proposed method outperforms FHMM-based FSM modeling results illustrated in literature.

Keywords

Bayesian Non-Parametric (BNP) Energy disaggregation Infinite Factorial Finite State Machine (IFFSM) Infinite Factorial Hidden Markov Model (IFHMM) Non-Intrusive Load Monitoring (NILM) Solar Home System (SHS) 

References

  1. 1.
    Aboulian, A., Donnal, J.S., Leeb, S.B.: Autonomous calibration of non-contact power monitors. IEEE Sens. J. 18(13), 5376–5385 (2018)CrossRefGoogle Scholar
  2. 2.
    Ahmed, M.E., Kim, D.I., Kim, J.Y., Shin, Y.: Energy-arrival-aware detection threshold in wireless-powered cognitive radio networks. IEEE Trans. Veh. Technol. 66(10), 9201–9213 (2017)CrossRefGoogle Scholar
  3. 3.
    Alcalá, J., Ureña, J., Hernández, Á., Gualda, D.: Event-based energy disaggregation algorithm for activity monitoring from a single-point sensor. IEEE Trans. Instrum. Meas. 66(10), 2615–2626 (2017)CrossRefGoogle Scholar
  4. 4.
    Andrean, V., Zhao, X., Teshome, D.F., Huang, T., Lian, K.: A hybrid method of cascade-filtering and committee decision mechanism for non-intrusive load monitoring. IEEE Access 6, 41212–41223 (2018)CrossRefGoogle Scholar
  5. 5.
    Aueb, M.T.R., Yau, C.: Hamming ball auxiliary sampling for factorial hidden Markov models. In: Advances in Neural Information Processing Systems, pp. 2960–2968 (2014)Google Scholar
  6. 6.
    Campbell, T., Kulis, B., How, J.: Dynamic clustering algorithms via small-variance analysis of Markov chain mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 41(6), 1338–1352 (2019)CrossRefGoogle Scholar
  7. 7.
    Chang, H., Lee, M., Lee, W., Chien, C., Chen, N.: Feature extraction-based hellinger distance algorithm for nonintrusive aging load identification in residential buildings. IEEE Trans. Ind. Appl. 52(3), 2031–2039 (2016)CrossRefGoogle Scholar
  8. 8.
    Dan, W., Li, H.X., Ce, Y.S.: Review of non-intrusive load appliance monitoring. In: 2018 Proceedings of the IEEE 3rd Advanced Information Technology Electronic and Automation Control Conference (IAEAC), pp. 18–23, October 2018Google Scholar
  9. 9.
    Diamantis, K., Dermitzakis, A., Hopgood, J.R., Sboros, V.: Super-resolved ultrasound echo spectra with simultaneous localization using parametric statistical estimation. IEEE Access 6, 14188–14203 (2018)CrossRefGoogle Scholar
  10. 10.
    Duarte, C., Delmar, P., Goossen, K.W., Barner, K., Gomez-Luna, E.: Non-intrusive load monitoring based on switching voltage transients and wavelet transforms. In: 2012 Future of Instrumentation International Workshop (FIIW), pp. 1–4. IEEE (2012)Google Scholar
  11. 11.
    Ducange, P., Marcelloni, F., Antonelli, M.: A novel approach based on finite-state machines with fuzzy transitions for nonintrusive home appliance monitoring. IEEE Trans. Ind. Inform. 10(2), 1185–1197 (2014)CrossRefGoogle Scholar
  12. 12.
    Egarter, D., Bhuvana, V.P., Elmenreich, W.: PALDi: online load disaggregation via particle filtering. IEEE Trans. Instrum. Meas. 64(2), 467–477 (2015)CrossRefGoogle Scholar
  13. 13.
    Erdil, E., Ghani, M.U., Rada, L., Argunsah, A.O., Unay, D., Tasdizen, T., Cetin, M.: Nonparametric joint shape and feature priors for image segmentation. IEEE Trans. Image Process. 26(11), 5312–5323 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fan, W., Bouguila, N., Du, J., Liu, X.: Axially symmetric data clustering through dirichlet process mixture models of Watson distributions. IEEE Trans. Neural Netw. Learn. Syst. 30(6), 1683–1694 (2019)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fan, W., Sallay, H., Bouguila, N.: Online learning of hierarchical Pitman-Yor process mixture of generalized dirichlet distributions with feature selection. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2048–2061 (2017)MathSciNetGoogle Scholar
  16. 16.
    Figueiredo, M., Ribeiro, B., de Almeida, A.: Electrical signal source separation via nonnegative tensor factorization using on site measurements in a smart home. IEEE Trans. Instrum. Meas. 63(2), 364–373 (2014)CrossRefGoogle Scholar
  17. 17.
    Ford, G., et al.: Wireless network traffic disaggregation using Bayesian nonparametric techniques. In: 52nd Annual Conference on Information Sciences and Systems, CISS 2018, Princeton, NJ, USA, 21–23 March 2018, pp. 1–6. IEEE (2018)Google Scholar
  18. 18.
    Gael, J.V., Teh, Y.W., Ghahramani, Z.: The infinite factorial hidden Markov model. In: Advances in Neural Information Processing Systems, pp. 1697–1704 (2009)Google Scholar
  19. 19.
    Gillis, J.M., Alshareef, S.M., Morsi, W.G.: Nonintrusive load monitoring using wavelet design and machine learning. IEEE Trans. Smart Grid 7(1), 320–328 (2016)CrossRefGoogle Scholar
  20. 20.
    Hart, G.W.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–1891 (1992)CrossRefGoogle Scholar
  21. 21.
    He, K., Stankovic, L., Liao, J., Stankovic, V.: Non-intrusive load disaggregation using graph signal processing. IEEE Trans. Smart Grid PP(99), 1 (2017)Google Scholar
  22. 22.
    Hosseini, S.S., Kelouwani, S., Agbossou, K., Cardenas, A., Henao, N.: Adaptive on-line unsupervised appliance modeling for autonomous household database construction. Electr. Power Energy Syst. J. 112, 156–168 (2019)CrossRefGoogle Scholar
  23. 23.
    Iwayemi, A., Zhou, C.: SARAA: semi-supervised learning for automated residential appliance annotation. IEEE Trans. Smart Grid 8(2), 779–786 (2017)Google Scholar
  24. 24.
    Jia, R., Gao, Y., Spanos, C.J.: A fully unsupervised non-intrusive load monitoring framework. In: Proceedings of the IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 872–878, November 2015Google Scholar
  25. 25.
    Jing, L., He, C., Huang, J., Ding, Z.: Joint channel estimation and detection using Markov chain Monte Carlo method over sparse underwater acoustic channels. IET Commun. 11(11), 1789–1796 (2017)CrossRefGoogle Scholar
  26. 26.
    Kaselimi, M., Protopapadakis, E., Voulodimos, A., Doulamis, N., Doulamis, A.: Multi-channel recurrent convolutional neural networks for energy disaggregation. IEEE Access 7, 81047–81056 (2019)CrossRefGoogle Scholar
  27. 27.
    Khodayar, M., Mohammadi, S., Khodayar, M.E., Wang, J., Liu, G.: Convolutional graph autoencoder: a generative deep neural network for probabilistic spatio-temporal solar irradiance forecasting. IEEE Trans. Sustain. Energy 1 (2019)Google Scholar
  28. 28.
    Kim, H., Marwah, M., Arlitt, M., Lyon, G., Han, J.: Unsupervised disaggregation of low frequency power measurements. In: Proceedings of the 2011 SIAM International Conference on Data Mining, pp. 747–758. SIAM (2011)Google Scholar
  29. 29.
    Kim, M.S., Kim, S.R., Kim, J., Yoo, Y.: Design and implementation of MAC protocol for SmartGrid HAN environment. In: Proceedings of the IEEE 11th International Conference on Computer and Information Technology, pp. 212–217, August 2011Google Scholar
  30. 30.
    Kolter, J.Z., Batra, S., Ng, A.Y.: Energy disaggregation via discriminative sparse coding. In: Advances in Neural Information Processing Systems, pp. 1153–1161 (2010)Google Scholar
  31. 31.
    Kolter, J.Z., Jaakkola, T.: Approximate inference in additive factorial HMMs with application to energy disaggregation. In: Artificial Intelligence and Statistics, pp. 1472–1482 (2012)Google Scholar
  32. 32.
    Kolter, J.Z., Johnson, M.J.: REDD: a public data set for energy disaggregation research. In: Workshop on Data Mining Applications in Sustainability (SIGKDD), San Diego, CA, vol. 25, pp. 59–62 (2011)Google Scholar
  33. 33.
    Kong, W., Dong, Z.Y., Ma, J., Hill, D.J., Zhao, J., Luo, F.: An extensible approach for non-intrusive load disaggregation with smart meter data. IEEE Trans. Smart Grid 9(4), 3362–3372 (2018)CrossRefGoogle Scholar
  34. 34.
    Kong, W., Dong, Z.Y., Wang, B., Zhao, J., Huang, J.: A practical solution for non-intrusive type II load monitoring based on deep learning and post-processing. IEEE Trans. Smart Grid 1 (2019)Google Scholar
  35. 35.
    Kramer, O.: Non-intrusive appliance load monitoring with bagging classifiers (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Lange, H., Bergés, M., Kolter, Z.: Neural variational identification and filtering for stochastic non-linear dynamical systems with application to non-intrusive load monitoring. In: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), ICASSP 2019, pp. 8340–8344. IEEE (2019)Google Scholar
  37. 37.
    Lhéritier, A., Cazals, F.: A sequential non-parametric multivariate two-sample test. IEEE Trans. Inf. Theory 64(5), 3361–3370 (2018)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Lindsten, F., Jordan, M.I., Schön, T.B.: Particle Gibbs with ancestor sampling. J. Mach. Learn. Res. 15(1), 2145–2184 (2014)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Liu, B., Yu, Y., Luan, W., Zeng, B.: An unsupervised electrical appliance modeling framework for non-intrusive load monitoring. In: Proceedings of the IEEE Power Energy Society General Meeting, pp. 1–5, July 2017Google Scholar
  40. 40.
    Liu, B., Luan, W., Yu, Y.: Dynamic time warping based non-intrusive load transient identification. Appl. Energy 195, 634–645 (2017)CrossRefGoogle Scholar
  41. 41.
    Liu, Q., Kamoto, K.M., Liu, X., Sun, M., Linge, N.: Low-complexity non-intrusive load monitoring using unsupervised learning and generalized appliance models. IEEE Trans. Consum. Electron. 65(1), 28–37 (2019)CrossRefGoogle Scholar
  42. 42.
    Mei, J., He, D., Harley, R.G., Habetler, T.G.: Random forest based adaptive non-intrusive load identification. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), pp. 1978–1983, July 2014Google Scholar
  43. 43.
    Meng, N., Sun, X., So, H.K., Lam, E.Y.: Computational light field generation using deep nonparametric Bayesian learning. IEEE Access 7, 24990–25000 (2019)CrossRefGoogle Scholar
  44. 44.
    Mesadi, F., Erdil, E., Cetin, M., Tasdizen, T.: Image segmentation using disjunctive normal Bayesian shape and appearance models. IEEE Trans. Med. Imaging 37(1), 293–305 (2018)CrossRefGoogle Scholar
  45. 45.
    Nalmpantis, C., Vrakas, D.: Machine learning approaches for non-intrusive load monitoring: from qualitative to quantitative comparation. Artif. Intell. Rev. 52(1), 217–243 (2019)CrossRefGoogle Scholar
  46. 46.
    Rahimpour, A., Qi, H., Fugate, D., Kuruganti, T.: Non-intrusive energy disaggregation using non-negative matrix factorization with sum-to-k constraint. IEEE Trans. Power Syst. 32(6), 4430–4441 (2017)CrossRefGoogle Scholar
  47. 47.
    Rashid, H., Singh, P., Stankovic, V., Stankovic, L.: Can non-intrusive load monitoring be used for identifying an appliance’s anomalous behaviour? Appl. Energy 238, 796–805 (2019)CrossRefGoogle Scholar
  48. 48.
    Ruiz, F.J.R., Valera, I., Svensson, L., Perez-Cruz, F.: Infinite factorial finite state machine for blind multiuser channel estimation. IEEE Trans. Cogn. Commun. Netw. 4(2), 177–191 (2018)CrossRefGoogle Scholar
  49. 49.
    Shin, C., Rho, S., Lee, H., Rhee, W.: Data requirements for applying machine learning to energy disaggregation. Energies 12(9), 1696 (2019)CrossRefGoogle Scholar
  50. 50.
    Tabatabaei, S.M., Dick, S., Xu, W.: Toward non-intrusive load monitoring via multi-label classification. IEEE Trans. Smart Grid 8(1), 26–40 (2017)CrossRefGoogle Scholar
  51. 51.
    Varela, P.M., Hong, J., Ohtsuki, T., Qin, X.: IGMM-based co-localization of mobile users with ambient radio signals. IEEE Internet Things J. 4(2), 308–319 (2017)CrossRefGoogle Scholar
  52. 52.
    Wang, W., Xi, J., Zhao, D.: Driving style analysis using primitive driving patterns with Bayesian nonparametric approaches. IEEE Trans. Intell. Transp. Syst. 1–13 (2018)Google Scholar
  53. 53.
    Xu, Y., Cheng, P., Chen, Z., Li, Y., Vucetic, B.: Mobile collaborative spectrum sensing for heterogeneous networks: a Bayesian machine learning approach. IEEE Trans. Sig. Process. 66(21), 5634–5647 (2018)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Yan, D., et al.: Household appliance recognition through a Bayes classification model. Sustain. Cities Soc. 46, 101393 (2019)CrossRefGoogle Scholar
  55. 55.
    Zaidi, A.A., Kupzog, F., Zia, T., Palensky, P.: Load recognition for automated demand response in microgrids. In: Proceedings of the IECON 2010–36th Annual Conference on IEEE Industrial Electronics Society, pp. 2442–2447, November 2010Google Scholar
  56. 56.
    Zhao, B., Stankovic, L., Stankovic, V.: On a training-less solution for non-intrusive appliance load monitoring using graph signal processing. IEEE Access 4, 1784–1799 (2016)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Kalthoum Zaouali
    • 1
    Email author
  • Mohamed Lassaad Ammari
    • 2
    • 3
  • Amine Chouaieb
    • 3
    • 4
  • Ridha Bouallegue
    • 4
  1. 1.Ecole Nationale d’Ingénieurs de Tunis, Innov’Com LaboratoryUniversité Tunis El ManarTunisTunisia
  2. 2.Department of Electrical and Computer EngineeringLaval UniversityQuebecCanada
  3. 3.Chifco CompanyTunisTunisia
  4. 4.Sup’Com, Innov’Com LaboratoryCarthage UniversityTunisTunisia

Personalised recommendations