Identification of Wireless User Perception Based on Unsupervised Machine Learning

  • Kaixuan Zhang
  • Guanghui Fan
  • Jun Zeng
  • Guan GuiEmail author
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 301)


Wireless user perception (WiUP) plays an important role in designing next-generation wireless communications systems. Users are very sensitive with the quality of WiUP. However, the bad quality of WiUP cannot be identified with traditional methods. In this paper, we propose an intelligent identification method using unsupervised machine learning. More precisely, we create an algorithm model based on historical data to realize feature extraction and clustering. The most similar cluster to those cells with bad WiUP is identified according to Euclidean distance. The experiment is conducted on the basis of a large amount of historical data. With several contrast experiments, Simulation results show that the method proposed achieves the accuracy of identification of bad WiUP over 93%. The study manifests that unsupervised machine learning is effective in identifying bad WiUP in wireless networks.


Wireless user perception Feature extraction Clustering Intelligent identification Machine learning 


  1. 1.
    Na, Z., Wang, Y., Li, X., Xia, J., Liu, X., Xiong, M.: Subcarrier allocation based Simultaneous Wireless Information and Power Transfer algorithm in 5G cooperative OFDM communication systems. Phys. Commun. 29, 164–170 (2018)CrossRefGoogle Scholar
  2. 2.
    Liu, X., Zhang, X., Jia, M., Fan, L., Lu, W., Zhai, X.: 5G-based green broadband communication system design with simultaneous wireless information and power transfer. Phys. Commun. 28, 130–137 (2018)CrossRefGoogle Scholar
  3. 3.
    Liu, M., Song, T., Gui, G.: Deep cognitive perspective: resource allocation for NOMA based heterogeneous IoT with imperfect SIC. IEEE Internet Things J. 1–11 (2018). Scholar
  4. 4.
    Liu, M., Yang, J., Song, T., Hu, J., Gui, G.: Deep learning-inspired message passing algorithm for efficient resource allocation in cognitive radio networks. IEEE Trans. Veh. Technol. 68(1), 641–653 (2018)CrossRefGoogle Scholar
  5. 5.
    Wu, J., Dong, M., Ota, K., Li, J., Guan, Z.: FCSS: fog computing based content-aware filtering for security services in information centric social networks. IEEE Trans. Emerg. Top. Comput. (2017).
  6. 6.
    Zhang, N., et al.: Software defined networking enabled wireless network virtualization: challenges and solutions. IEEE Netw. 31(5), 42–49 (2017)CrossRefGoogle Scholar
  7. 7.
    Cicalo, S., Sayadi, B., Faucheux, F., Tralli, V., Kerboeuf, S., Changuel, N.: Improving QoE and fairness in HTTP adaptive streaming over LTE network. IEEE Trans. Circuits Syst. Video Technol. 26(12), 2284–2298 (2015)CrossRefGoogle Scholar
  8. 8.
    Brito, I.V.S., Figueiredo, G.B.: Improving QoS and QoE through seamless handoff in software-defined IEEE 802.11 mesh networks. IEEE Commun. Lett. 21(11), 2484–2487 (2017)CrossRefGoogle Scholar
  9. 9.
    Kato, N., et al.: The deep learning vision for heterogeneous network traffic control: proposal, challenges, and future perspective. IEEE Wirel. Commun. 24(3), 146–153 (2017)CrossRefGoogle Scholar
  10. 10.
    Kato, N.: Challenges of content-centric mobile networks. IEEE Network 31(1), 2 (2017)CrossRefGoogle Scholar
  11. 11.
    Tan, S., Mayrovouniotis, M.L.: Reducing data dimensionality through optimizing neural network inputs. AIChE J. 41(6), 1471–1480 (1995)CrossRefGoogle Scholar
  12. 12.
    Abdulhussain, M.I., Gan, J.Q.: An experimental investigation on PCA based on cosine similarity and correlation for text feature dimensionality reduction. In: Computer Science and Electronic Engineering Conference (CCEC), pp. 1–4 (2015)Google Scholar
  13. 13.
    Li, X., et al.: Joint multilabel classification with community-aware label graph learning. IEEE Trans. Image Process. 25(1), 484–493 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fadlullah, Z.M., et al.: State-of-the-art deep learning: evolving machine intelligence toward tomorrow’s intelligent network traffic control systems. IEEE Commun. Surv. Tutorials 19(4), 2432–2455 (2017)CrossRefGoogle Scholar
  15. 15.
    Wang, Y., Gui, G., Zhao, N., Yin, Y., Huang, H., Li, Y.: Deep learning for optical character recognition and its application to VAT invoice recognition (2018)Google Scholar
  16. 16.
    Huang, H., Gui, G., Sari, H., Adachi, F.: Deep learning for super-resolution DOA estimation in massive MIMO systems. In: 2018 IEEE 88th Vehicular Technology Conference (VTC Fall), Kansas, August 2018Google Scholar
  17. 17.
    Gao, X., Jin, S., Wen, C.K., Li, G.Y.: ComNet: combination of deep learning and expert knowledge in OFDM receivers. IEEE Commun. Lett. 22(12), 2627–2630 (2018)CrossRefGoogle Scholar
  18. 18.
    Wang, T., Wen, C., Wang, H., Gao, F., Jiang, T., Jin, S.: Deep learning for wireless physical layer: opportunities and challenges. China Commun. 14(11), 92–111 (2017)CrossRefGoogle Scholar
  19. 19.
    Lam, D., Wei, M., Wunsch, D.: Clustering data of mixed categorical and numerical type with unsupervised feature learning. IEEE Access 3, 1605–1613 (2015)CrossRefGoogle Scholar
  20. 20.
    Chen, K., Yang, S.: Effect of multi-hidden-layer structure on performance of BP neural network: probe. In: 2012 8th International Conference on Natural Computation, no. 2010, pp. 1–5 (2012)Google Scholar
  21. 21.
    Zhang, Z., Zhao, M., Chow, T.W.S.: Binary-and multi-class group sparse canonical correlation analysis for feature extraction and classification. IEEE Trans. Knowl. Data Eng. 25(10), 2192–2205 (2013)CrossRefGoogle Scholar
  22. 22.
    Agarwal, S., Ranjan, P., Ujlayan, A.: Comparative analysis of dimensionality reduction algorithms, case study: PCA. In: Proceedings of 2017 11th International Conference on Intelligent Systems and Control, ISCO 2017, pp. 255–259 (2017)Google Scholar
  23. 23.
    Liu, Y., Liu, S., Wang, Y., Lombardi, F., Han, J.: A stochastic computational multi-layer perceptron with backward propagation. IEEE Trans. Comput. 67(9), 1273–1286 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Yang, F., Yang, L., Wang, D., Qi, P., Wang, H.: Method of modulation recognition based on combination algorithm of K-means clustering and grading training SVM. China Commun. 15, 55–63 (2018)CrossRefGoogle Scholar
  25. 25.
    Dokmanic, I., Parhizkar, R., Ranieri, J., Vetterli, M.: Euclidean distance matrices: essential theory, algorithms, and applications. IEEE Signal Process. Mag. 32(6), 12–30 (2015)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Kaixuan Zhang
    • 1
  • Guanghui Fan
    • 1
  • Jun Zeng
    • 1
  • Guan Gui
    • 1
    Email author
  1. 1.College of Telecommunications and Information EngineeringNanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations