Advertisement

Mechanisms of Deep Brain Stimulation

  • Abdelhamid BenazzouzEmail author
  • Clement Hamani
Chapter
  • 33 Downloads

Abstract

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is now considered as a treatment of choice for patients suffering from certain neurological and psychiatric disorders such as Parkinson’s disease, tremor, dystonia, and obsessive–compulsive disorders. However, its mechanisms of action are still debated. In this chapter, we describe and discuss how DBS works based on experimental data from animal models and clinical data from patients.

The stimulation frequencies commonly used in clinical applications range between 130 and 185 Hz, involving a fairly complex interaction of inhibitory and excitatory effects, both locally and at a distance from the stimulated target. The majority of studies have shown that these frequencies induced a functional inactivation of targeted structures by depolarization block mechanism and/or by stimulation of axons (e.g., of GABA-mediated afferent neurons). Additional consequences include changes in glial activity, synaptic transmission, and the development of neuroplasticity by increasing neurogenesis, augmented levels of trophic factors, changes in the expression of receptors, and the volume of brain structures.

Thus, DBS exerts its therapeutic effects through multiple complex mechanisms. A better understanding of its mechanisms may refine its use and improve the efficacy of this therapy.

Keywords

Deep brain stimulation High-frequency stimulation Subthalamic nucleus Neurological disorders Psychiatric disorders Animal models 

References

  1. Abelson JL, Curtis GC, Sagher O, et al. Deep brain stimulation for refractory obsessive-compulsive disorder. Biol Psychiatry. 2005;57:510–6.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abosch A, Kapur S, Lang AE, et al. Stimulation of the subthalamic nucleus in Parkinson’s disease does not produce striatal dopamine release. Neurosurgery. 2003;53:1095–102.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12:366–75.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990;13:266–71.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alexander GE, Crutcher MD, DeLong MR. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res. 1990;85:119–46.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ammari R, Bioulac B, Garcia L, Hammond C. The subthalamic nucleus becomes a generator of bursts in the dopamine-depleted state. Its high frequency stimulation dramatically weakens transmission to the globus pallidus. Front Syst Neurosci. 2011;5:43.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Anderson ME, Postupna N, Ruffo M. Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. J Neurophysiol. 2003;89:1150–60.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Anderson TR, Hu B, Iremonger K, Kiss ZH. Selective attenuation of afferent synaptic transmission as a mechanism of thalamic deep brain stimulation-induced tremor arrest. J Neurosci. 2006;26:841–50.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ashby P, Paradiso G, Saint-Cyr JA, Chen R, Lang AE, Lozano AM. Potentials recorded at the scalp by stimulation near the human subthalamic nucleus. Clin Neurophysiol. 2001;112:431–7.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Benabid AL, Benazzouz A, Hoffmann D, et al. Long-term electrical inhibition of deep brain targets in movement disorders. Mov Disord. 1998;13(Suppl 3):119–25.PubMedPubMedCentralGoogle Scholar
  11. Benazzouz A, Gross C, Feger J, Boraud T, Bioulac B. Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci. 1993;5:382–9.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Benazzouz A, Piallat B, Pollak P, Benabid AL. Responses of substantia nigra pars reticulata and globus pallidus complex to high frequency stimulation of the subthalamic nucleus in rats: electrophysiological data. Neurosci Lett. 1995;189:77–80.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Benazzouz A, Boraud T, Feger J, Burbaud P, Bioulac B, Gross C. Alleviation of experimental hemiparkinsonism by high-frequency stimulation of the subthalamic nucleus in primates: a comparison with L-Dopa treatment. Mov Disord. 1996;11:627–32.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Benazzouz A, Gao DM, Ni ZG, Piallat B, Bouali-Benazzouz R, Benabid AL. Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neuroscience. 2000a;99:289–95.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Benazzouz A, Gao D, Ni Z, Benabid AL. High frequency stimulation of the STN influences the activity of dopamine neurons in the rat. Neuroreport. 2000b;11:1593–6.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Benazzouz A, Tai CH, Meissner W, Bioulac B, Bezard E, Gross C. High-frequency stimulation of both zona incerta and subthalamic nucleus induces a similar normalization of basal ganglia metabolic activity in experimental parkinsonism. FASEB J. 2004;18:528–30.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bergman H, Wichmann T, DeLong MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science. 1990;249:1436–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Beurrier C, Bioulac B, Audin J, Hammond C. High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol. 2001;85:1351–6.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Blythe SN, Wokosin D, Atherton JF, Bevan MD. Cellular mechanisms underlying burst firing in substantia nigra dopamine neurons. J Neurosci. 2009;29:15531–41.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Boraud T, Bezard E, Bioulac B, Gross C. High frequency stimulation of the internal globus pallidus (GPi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of GPi neurons in the MPTP-treated monkey. Neurosci Lett. 1996;215:17–20.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bruet N, Windels F, Bertrand A, Feuerstein C, Poupard A, Savasta M. High frequency stimulation of the subthalamic nucleus increases the extracellular contents of striatal dopamine in normal and partially dopaminergic denervated rats. J Neuropathol Exp Neurol. 2001;60:15–24.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Carcenac C, Favier M, Vachez Y, et al. Subthalamic deep brain stimulation differently alters striatal dopaminergic receptor levels in rats. Mov Disord. 2015;30:1739–49.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chakravarty MM, Hamani C, Martinez-Canabal A, et al. Deep brain stimulation of the ventromedial prefrontal cortex causes reorganization of neuronal processes and vasculature. Neuroimage. 2016;125:422–7.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Cooperrider J, Furmaga H, Plow E, et al. Chronic deep cerebellar stimulation promotes long-term potentiation, microstructural plasticity, and reorganization of perilesional cortical representation in a rodent model. J Neurosci. 2014;34:9040–50.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Degos B, Deniau JM, Chavez M, Maurice N. Subthalamic nucleus high-frequency stimulation restores altered electrophysiological properties of cortical neurons in parkinsonian rat. PLoS One. 2013;8(12):e83608.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dejean C, Hyland B, Arbuthnott G. Cortical effects of subthalamic stimulation correlate with behavioral recovery from dopamine antagonist induced akinesia. Cereb Cortex. 2009;19:1055–63.PubMedCrossRefPubMedCentralGoogle Scholar
  27. DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990;13:281–5.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dostrovsky JO, Lozano AM. Mechanisms of deep brain stimulation. Mov Disord. 2002;17(Suppl 3):S63–8.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Dostrovsky JO, Levy R, Wu JP, Hutchison WD, Tasker RR, Lozano AM. Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol. 2000;84:570–4.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Eltahawy HA, Saint-Cyr J, Giladi N, Lang AE, Lozano AM. Primary dystonia is more responsive than secondary dystonia to pallidal interventions: outcome after pallidotomy or pallidal deep brain stimulation. Neurosurgery. 2004;54:613–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Esposito E, Bunney BS. The effect of acute and chronic treatment with SCH 23390 on the spontaneous activity of midbrain dopamine neurons. Eur J Pharmacol. 1989;162:109–13.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Filali M, Hutchison WD, Palter VN, Lozano AM, Dostrovsky JO. Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res. 2004;156:274–81.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Florence G, Sameshima K, Fonoff ET, Hamani C. Deep brain stimulation: more complex than the inhibition of cells and excitation of fibers. Neuroscientist. 2016;22:332–45.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Grace AA, Bunney BS. Induction of depolarization block in midbrain dopamine neurons by repeated administration of haloperidol: analysis using in vivo intracellular recording. J Pharmacol Exp Ther. 1986;238:1092–100.PubMedPubMedCentralGoogle Scholar
  35. Hamani C, Temel Y. Deep brain stimulation for psychiatric disease: contributions and validity of animal models. Sci Transl Med. 2012;4:142–8.CrossRefGoogle Scholar
  36. Hamani C, Machado DC, Hipolide DC, et al. Deep brain stimulation reverses anhedonic-like behavior in a chronic model of depression: role of serotonin and brain derived neurotrophic factor. Biol Psychiatry. 2012;71:30–5.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci. 2003;23:1916–23.PubMedPubMedCentralCrossRefGoogle Scholar
  38. He Z, Jiang Y, Xu H, et al. High frequency stimulation of subthalamic nucleus results in behavioral recovery by increasing striatal dopamine release in 6-hydroxydopamine lesioned rat. Behav Brain Res. 2014;263:108–14.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Hershey T, Revilla FJ, Wernle AR, et al. Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD. Neurology. 2003;61:816–21.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hilker R, Voges J, Ghaemi M, et al. Deep brain stimulation of the subthalamic nucleus does not increase the striatal dopamine concentration in parkinsonian humans. Mov Disord. 2003;18:41–8.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Jech R, Urgosik D, Tintera J, et al. Functional magnetic resonance imaging during deep brain stimulation: a pilot study in four patients with Parkinson’s disease. Mov Disord. 2001;16:1126–32.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kiss ZH, Mooney DM, Renaud L, Hu B. Neuronal response to local electrical stimulation in rat thalamus: physiological implications for mechanisms of deep brain stimulation. Neuroscience. 2002;113:137–43.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Klavir O, Flash S, Winter C, Joel D. High frequency stimulation and pharmacological inactivation of the subthalamic nucleus reduces ‘compulsive’ lever-pressing in rats. Exp Neurol. 2009;215:101–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Krack P, Batir A, Van Blercom N, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 2003;349:1925–34.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Kringelbach ML, Jenkinson N, Owen SL, Aziz TZ. Translational principles of deep brain stimulation. Nat Rev Neurosci. 2007;8:623–35.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Kuznetsova AY, Huertas MA, Kuznetsov AS, Paladini CA, Canavier CC. Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron. J Comput Neurosci. 2010;28:389–403.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Lee KH, Blaha CD, Harris BT, et al. Dopamine efflux in the rat striatum evoked by electrical stimulation of the subthalamic nucleus: potential mechanism of action in Parkinson’s disease. Eur J Neurosci. 2006;23:1005–14.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Li S, Arbuthnott GW, Jutras MJ, Goldberg JA, Jaeger D. Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation. J Neurophysiol. 2007;98:3525–37.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Li Q, Ke Y, Chan DC, et al. Therapeutic deep brain stimulation in parkinsonian rats directly influences motor cortex. Neuron. 2012;76:1030–41.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Limousin P, Pollak P, Benazzouz A, et al. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet. 1995;345:91–5.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Limousin P, Krack P, Pollak P, et al. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 1998;339:1105–11.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Lozano AM, Dostrovsky J, Chen R, Ashby P. Deep brain stimulation for Parkinson’s disease: disrupting the disruption. Lancet Neurol. 2002;1:225–31.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Magarinos-Ascone C, Pazo JH, Macadar O, Buno W. High-frequency stimulation of the subthalamic nucleus silences subthalamic neurons: a possible cellular mechanism in Parkinson’s disease. Neuroscience. 2002;115:1109–17.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Maurice N, Thierry AM, Glowinski J, Deniau JM. Spontaneous and evoked activity of substantia nigra pars reticulata neurons during high-frequency stimulation of the subthalamic nucleus. J Neurosci. 2003;23(30):9929–36.PubMedPubMedCentralCrossRefGoogle Scholar
  55. McCracken CB, Grace AA. High-frequency deep brain stimulation of the nucleus accumbens region suppresses neuronal activity and selectively modulates afferent drive in rat orbitofrontal cortex in vivo. J Neurosci. 2007;27:12601–10.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Meissner W, Reum T, Paul G, et al. Striatal dopaminergic metabolism is increased by deep brain stimulation of the subthalamic nucleus in 6-hydroxydopamine lesioned rats. Neurosci Lett. 2001;303:165–8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Meissner W, Harnack D, Paul G, et al. Deep brain stimulation of subthalamic neurons increases striatal dopamine metabolism and induces contralateral circling in freely moving 6-hydroxydopamine-lesioned rats. Neurosci Lett. 2002;328:105–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Meissner W, Harnack D, Reese R, et al. High-frequency stimulation of the subthalamic nucleus enhances striatal dopamine release and metabolism in rats. J Neurochem. 2003;85:601–9.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Meissner W, Leblois A, Hansel D, et al. Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain. 2005;128:2372–82.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Montgomery EB. Effects of GPi stimulation on human thalamic neuronal activity. Clin Neurophysiol. 2006;117:2691–702.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Moro E, Scerrati M, Romito LM, Roselli R, Tonali P, Albanese A. Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson’s disease. Neurology. 1999;53:85–90.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Nuttin B, Gybels J, Cosyns P, Gabriels L, Meyerson B, Andreewitch S, Rasmussen SA, Greenberg B, Friehs G, Rezai AR, Montgomery E, Malone D, Fins JJ. Deep brain stimulation for psychiatric disorders. Neurosurg Clin N Am. 2003;14(2):xv–xvi.Google Scholar
  63. Oswal A, Beudel M, Zrinzo L, et al. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease. Brain. 2016;139:1482–96.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Perlmutter JS, Mink JW, Bastian AJ, et al. Blood flow responses to deep brain stimulation of thalamus. Neurology. 2002;58(9):1388–94.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Richards CD, Shiroyama T, Kitai ST. Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat. Neuroscience. 1997;80:545–57.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Salin P, Manrique C, Forni C, Kerkerian-Le Goff L. High-frequency stimulation of the subthalamic nucleus selectively reverses dopamine denervation-induced cellular defects in the output structures of the basal ganglia in the rat. J Neurosci. 2002;22:5137–48.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Stefani A, Fedele E, Pierantozzi M, et al. Reduced GABA content in the motor thalamus during effective deep brain stimulation of the subthalamic nucleus. Front Syst Neurosci. 2011;5:17.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Tai CH, Boraud T, Bezard E, Bioulac B, Gross C, Benazzouz A. Electrophysiological and metabolic evidence that high-frequency stimulation of the subthalamic nucleus bridles neuronal activity in the subthalamic nucleus and the substantia nigra reticulata. FASEB J. 2003;17:1820–30.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Tasker RR. Deep brain stimulation is preferable to thalamotomy for tremor suppression. Surg Neurol. 1998;49:145–53.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Temel Y, Boothman LJ, Blokland A, et al. Inhibition of 5-HT neuron activity and induction of depressive-like behavior by high-frequency stimulation of the subthalamic nucleus. Proc Natl Acad Sci U S A. 2007;104:17087–92.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Toda H, Hamani C, Fawcett AP, Hutchison WD, Lozano AM. The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. J Neurosurg. 2008;108:132–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Valenti O, Cifelli P, Gill KM, Grace AA. Antipsychotic drugs rapidly induce dopamine neuron depolarization block in a developmental rat model of schizophrenia. J Neurosci. 2011;31:12330–8.PubMedPubMedCentralCrossRefGoogle Scholar
  73. van Kuyck K, Demeulemeester H, Feys H, et al. Effects of electrical stimulation or lesion in nucleus accumbens on the behaviour of rats in a T-maze after administration of 8-OH-DPAT or vehicle. Behav Brain Res. 2003;140:165–73.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Vitek JL. Mechanisms of deep brain stimulation: excitation or inhibition. Mov Disord. 2002;17 Suppl 3:S69–72.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Welter ML, Houeto JL, Bonnet AM, et al. Effects of high-frequency stimulation on subthalamic neuronal activity in parkinsonian patients. Arch Neurol. 2004;61:89–96.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Windels F, Bruet N, Poupard A, et al. Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat. Eur J Neurosci. 2000;12:4141–6.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Windels F, Carcenac C, Poupard A, Savasta M. Pallidal origin of GABA release within the substantia nigra pars reticulata during high-frequency stimulation of the subthalamic nucleus. J Neurosci. 2005;25:5079–86.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Winter C, Mundt A, Jalali R, et al. High frequency stimulation and temporary inactivation of the subthalamic nucleus reduce quinpirole-induced compulsive checking behavior in rats. Exp Neurol. 2008;210:217–28.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Univ. de Bordeaux, Institut des Maladies NeurodégénérativesBordeauxFrance
  2. 2.CNRS, Institut des Maladies NeurodégénérativesBordeauxFrance
  3. 3.Harquail Centre for Neuromodulation, Hurvitz Brain Science Program, Sunnybrook Research InstituteUniversity of TorontoTorontoCanada
  4. 4.Division of Neurosurgery, Sunnybrook Health Sciences CentreUniversity of TorontoTorontoCanada

Personalised recommendations