Analytical Methods

  • Julia Henke
Part of the Life Course Research and Social Policies book series (LCRS, volume 11)


In this chapter we are going to introduce the methods that we will use to empirically answer our research questions. The objective is to provide a brief overview of our methodological choices by expounding on possible alternatives, and to provide the background information necessary for understanding the results presented in the subsequent chapters. We begin by determining the measurement level of ordinal-level variables and the resulting choices for bivariate statistics before specifically addressing the two main methods used, regression models and structural equation models. All statistical analysis presented in this volume was performed using the software Stata 12.


  1. Acock, A. C. (2008). A gentle introduction to Stata (2nd ed.). College Station: Stata Press.Google Scholar
  2. Acock, A. C. (2013). Discovering structural equation modeling using Stata. College Station: Stata Press.Google Scholar
  3. Agresti, A. (2012). Analysis of ordinal categorical data. Hoboken: Wiley.Google Scholar
  4. Agresti, A. (2013). Categorical data analysis. Hoboken: Wiley.Google Scholar
  5. Benninghaus, H. (2007). Deskriptive Statistik. Wiesbaden: Springer.CrossRefGoogle Scholar
  6. Blaikie, N. (2003). Analyzing quantitative data: From description to explanation. SAGE.Google Scholar
  7. Bollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual Review of Psychology, 53(1), 605–634.CrossRefGoogle Scholar
  8. Bollen, K. A., Tueller, S. J., & Oberski, D. (2013). Issues in the structural equation modeling of complex survey data. In Proceedings 59th ISI World Statistics Congress, 25–30 August, Hong Kong (S. 1235–1240).Google Scholar
  9. Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: Guilford Press.Google Scholar
  10. Chabert, J.-L. (1989). Gauss et la méthode des moindres carrés. Revue d’histoire des sciences, 42(1), 5–26.CrossRefGoogle Scholar
  11. Chin, W. W. (1998). Commentary: Issues and opinion on structural equation modeling. MIS Quarterly, 22(1), vii–xvi.Google Scholar
  12. Clason, D. L., & Dormody, T. J. (1995). Analyzing data measured by individual Likert-type items. Journal of Agricultural Education, 35, 31–35.CrossRefGoogle Scholar
  13. Cliff, N. (2014). Ordinal methods for behavioral data analysis. New York: Psychology Press.CrossRefGoogle Scholar
  14. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed., Auflage: Revised.). Hillsdale: Lawrence Erlbaum Assoc Inc.Google Scholar
  15. Cramer, D. (1998). Fundamental statistics for social research: Step-by-step calculations and computer techniques using SPSS for windows. New York: Psychology Press.Google Scholar
  16. Dumouchel, W. H., & Duncan, G. J. (1983). Using sample survey weights in multiple regression analyses of stratified samples. Journal of the American Statistical Association, 78(383), 535–543.CrossRefGoogle Scholar
  17. Edwards, J. R., & Bagozzi, R. P. (2000). On the nature and direction of relationships between constructs and measures. Psychological Methods, 5(2), 155–174.CrossRefGoogle Scholar
  18. Fuller, W. A. (2009). Sampling statistics (1st ed.). Hoboken: Wiley.CrossRefGoogle Scholar
  19. Goldberger, A. S. (1972). Structural equation methods in the social sciences. Econometrica, 40(6), 979–1001.CrossRefGoogle Scholar
  20. Healey, J. (2009). The essentials of statistics: A tool for social research. Boston: Cengage Learning.Google Scholar
  21. Holt, D., Smith, T. M. F., & Winter, P. D. (1980). Regression analysis of data from complex surveys. Journal of the Royal Statistical Society. Series A (General), 143(4), 474–487.CrossRefGoogle Scholar
  22. Hoyle, R. H. (2011). Structural equation modeling for social and personality psychology. London: Sage.CrossRefGoogle Scholar
  23. Hu, L.-T., & Bentler, P. M. (1995). Evaluating model fit. In R. H. Hoyle (Hrsg.), Structural equation modeling: Concepts, issues, and applications (S. 76–99). Thousand Oaks: Sage.Google Scholar
  24. Jamieson, S. (2004). Likert scales: How to (ab)use them. Medical Education, 38(12), 1217–1218.CrossRefGoogle Scholar
  25. Jann, B. (2005). Einführung in die Statistik. Wiesbaden: Oldenbourg Verlag.CrossRefGoogle Scholar
  26. Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34(2), 183–202.CrossRefGoogle Scholar
  27. Kish, L., & Frankel, M. (1974). Inference from complex samples. Journal of the Royal Statistical Society, Series B, 36, 1–37.Google Scholar
  28. Kleinbaum, D., Kupper, L., Nizam, A., & Rosenberg, E. (2013). Applied regression analysis and other multivariable methods. Boston: Cengage Learning.Google Scholar
  29. Kohler, U., & Kreuter, F. (2008). Data analysis using Stata (2nd Ed., 2. Aufl.). College Station: Stata Press.Google Scholar
  30. Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 22(140), 1–55.Google Scholar
  31. Long, J. S. (1997). Regression models for categorical and limited dependent variables. Thousand Oaks: Sage.Google Scholar
  32. Long, J. S., & Freese, J. (2006). Regression models for categorical dependent variables using Stata (Second ed.). Stata Press.Google Scholar
  33. Marsh, H. W., Morin, A. J. S., Parker, P. D., & Kaur, G. (2014). Exploratory structural equation modeling: An integration of the best features of exploratory and confirmatory factor analysis. Annual Review of Clinical Psychology, 10(1), 85–110.CrossRefGoogle Scholar
  34. McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal Statistical Society. Series B (Methodological), 42(2), 109–142.CrossRefGoogle Scholar
  35. Michell, J. (1986). Measurement scales and statistics: A clash of paradigms. Psychological Bulletin, 100(3), 398–407.CrossRefGoogle Scholar
  36. Norman, G. (2010). Likert scales, levels of measurement and the “laws” of statistics. Advances in Health Sciences Education, 15(5), 625–632.CrossRefGoogle Scholar
  37. Pearl, J. (2009). Causality: Models. In Reasoning and inference (2nd ed.). Cambridge/New York: Cambridge University Press.Google Scholar
  38. Pearson, E. S. (1967). Studies in the history of probability and statistics. XVII: Some reflexions on continuity in the development of mathematical statistics, 1885–1920. Biometrika, 54(3/4), 341–355.CrossRefGoogle Scholar
  39. Pfeffermann, D. (1993). The role of sampling weights when modeling survey data. International Statistical Review/Revue Internationale de Statistique, 61(2), 317–337.Google Scholar
  40. Rhemtulla, M., Brosseau-Liard, P. É., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17(3), 354–373.CrossRefGoogle Scholar
  41. Stapleton, L. M. (2008). Variance estimation using replication methods in structural equation modeling with complex sample data. Structural Equation Modeling: A Multidisciplinary Journal, 15(2), 183–210.CrossRefGoogle Scholar
  42. Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103(2684), 677–680.CrossRefGoogle Scholar
  43. Thompson, M. (1997). Theory of sample surveys (Softcover reprint of the original 1st ed. 1997 edition). London: Chapman and Hall/CRC.Google Scholar
  44. Thurstone, L. L. (1947). Multiple-factor analysis; A development and expansion of The Vectors of Mind (Bd. xix). Chicago: University of Chicago Press.Google Scholar
  45. Toutenburg, H., & Heumann, C. (2008). Deskriptive Statistik: eine Einführung in Methoden und Anwendungen mit R und SPSS. Berlin/Heidelberg: Springer.Google Scholar
  46. Weinberg, S. L., & Abramowitz, S. K. (2002). Data analysis for the behavioral sciences using SPSS. Cambridge: Cambridge University Press.Google Scholar
  47. Winship, C., & Radbill, L. (1994, November 1). Sampling weights and regression analysis. Sociological Methods & Research, 23(2), 230–257. Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Julia Henke
    • 1
  1. 1.University of GenevaGenevaSwitzerland

Personalised recommendations