Advertisement

In Situ Synchrotron X-Ray Diffraction Stress Analysis During Laser Surface Line Hardening of Samples with Specific Geometric Features

  • Dominik KieferEmail author
  • Jens Gibmeier
  • Fabian Wilde
  • Felix Beckmann
Conference paper
  • 493 Downloads
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Multiple in situ X-ray diffraction experiments of temperature controlled laser line hardening processes have been carried out at the German Electron Synchrotron (DESY) in Hamburg, Germany. During the process, the local strain and stress evolution were monitored using synchrotron radiation with a time resolution of 50 Hz with a spatial resolution of less than Ø1 mm. To quantify sample geometry effects on the stress formation and hence the residual stress state in the process zone, different samples with geometric features made of steel grade AISI 4140 were line hardened by means of a high-power diode laser unit using a maximum control temperature of 950 °C at constant laser feed of 0.8 m/min. A specially designed process chamber was used in the experiment, allowing the control of the inert gas atmosphere to avoid surface oxidization. The symmetric application of four fast micro-strip line detectors allows for the real-time measurement of several diffraction lines hkl during the heat treatment process. The thermal and elastic strains were separated and time resolved stress analysis was carried out using a conventional X-ray stress analysis approach. The results were carefully discussed using data obtained by numerical process simulation by finite element method (FEM). It could be shown and explained that geometric features (radii) in the process zone of laser surface line hardening lead to a decrease of resulting residual stresses transverse to the processed workpiece zone.

Keywords

Synchrotron radiation In situ X-ray diffraction Laser surface line hardening Stress analysis Steel AISI 4140 

Notes

Acknowledgements

The authors gratefully acknowledge the financial Support by the German Research Foundation (DFG) in the projects GI376/10-1 and BE5341/1-1. The authors also gratefully acknowledge DESY for granting beamtime at P05@PETRAIII and furthermore the technical support provided by DESY and HZG. Additional thanks to Baden-Württemberg High Performance Computing (bwHPC) for the support with the numerical simulations.

References

  1. 1.
    Kennedy E, Byrne G, Collins DN (2004) A review of the use of high power diode lasers in surface hardening. J Mat Proc Tech 155–156:1855–1860.  https://doi.org/10.1016/j.jmatprotec.2004.04.276CrossRefGoogle Scholar
  2. 2.
    De la Cruz P, Odén M, Ericsson T (1998) Effect of laser hardening on the fatigue strength and fracture of a B-Mn steel. Int J Fatigue 20(5):389–398.  https://doi.org/10.1016/S0142-1123(98)00010-3CrossRefGoogle Scholar
  3. 3.
    Heitkemper M, Fischer A, Bohne C, Pyzalla A (2001) Wear mechanisms of laser-hardened martensitic high-nitrogen-steels under sliding wear. Wear 250:477–484CrossRefGoogle Scholar
  4. 4.
    Müller K, Bergmann HW (1999) Suitability of materials for laser beam surface hardening. Z Metallkunde 90:881–887Google Scholar
  5. 5.
    Obergfell K, Schulze V, Vöhringer O (2003) Simulation of phase transformations and temperature profiles by temperature controlled laser hardening: influence of properties of base material. Surf Eng 19:359–363.  https://doi.org/10.1179/026708403225007572CrossRefGoogle Scholar
  6. 6.
    Miokovic T, Schulze V, Vöhringer O, Löhe D (2005) Auswirkung zyklischer Temperaturänderungen beim Laserstrahlhärten auf den Randschichtzustand von vergütetem 42CrMo4. Z Werkst Wärmebeh Fertigung 60(3):142–149Google Scholar
  7. 7.
    Domes J (1995) Die Ausbildung von Makroeigenspannungen beim Laserstrahlrandschichthärten und anderen Verfahren der Lasermaterialbearbeitung. Ph.D. Thesis, Universität Erlangen-NürnbergGoogle Scholar
  8. 8.
    Müller K, Körner C, Bergmann HW (1996) Numerische Simulation der Eigenspannungen und Deformationen beim Laserstrahlrandschichthärten. HTM 51:19–28Google Scholar
  9. 9.
    Kiefer D, Schüssler P, Mühl F, Gibmeier J (2019) Experimental and simulative studies on residual stress formation for laser-beam surface hardening. HTM J Heat Treat Mater 74:23–35.  https://doi.org/10.3139/105.110374CrossRefGoogle Scholar
  10. 10.
    Kostov V, Gibmeier J, Wilde F, Staron P, Rössler R, Wanner A (2012) Fast in situ phase and stress analysis during laser surface treatment: a synchrotron x-ray diffraction approach. Rev Sci Inst 83(115101):1–11.  https://doi.org/10.1063/1.4764532CrossRefGoogle Scholar
  11. 11.
    Kostov V (2014) Untersuchungen zur zeitaufgelösten Spannungsentwicklung und Eigenspannungsentstehung beim Laserstrahlrandschichthärten am Beispiel des Stahls 42CrMo4. Ph.D. thesis, Karlsruher Institut für TechnologieGoogle Scholar
  12. 12.
    Kiefer D, Gibmeier J, Beckmann F, Wilde F (2016) In-situ monitoring of laser surface line hardening by means of synchrotron X-Ray diffraction. Mater Res Proc 2:467–472. http://dx.doi.org/10.21741/9781945291173-79
  13. 13.
    Kiefer D, Gibmeier J, Beckmann F (2018) Fast temporal and spatial resolved stress analysis at laser surface line hardening of steel AISI 4140. Mater Res Proc 4:91–96. http://dx.doi.org/10.21741/9781945291678-14
  14. 14.
    Macherauch E, Müller P (1961) Das sin2ψ–Verfahren der röntgenographischen Spannungsermittlung. Z Angew Phys 13:305–312Google Scholar
  15. 15.
    Kostov V, Gibmeier J, Wanner A (2011) Laser surface hardening of steel: effect of process atmosphere on the microstructure and residual stresses. Mater Sci Forum 772:149–153.  https://doi.org/10.4028/www.scientific.net/MSF.772.149CrossRefGoogle Scholar
  16. 16.
    Daymond MR (2004) The determination of a continuum mechanics equivalent elastic strain from the analysis of multiple diffraction peaks. J Appl Phys 96(8):4263–4272.  https://doi.org/10.1063/1.1794896CrossRefGoogle Scholar
  17. 17.
    Wolfstieg U (1976) Die Symmetrisierung unsymmetrischer Interferenzlinien mit Hilfe von Spezialblenden. HTM 31:23–27Google Scholar
  18. 18.
    Every AG, McCurdy AK (1992) Low frequency properties of dielectric crystals—second and higher order elastic constants. In: Nelson DF (ed) Landolt-Börnstein—group III condensed matter. Springer, Berlin.  https://doi.org/10.1007/b44185
  19. 19.
    Kröner E (1958) Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z für Physik 151(4):504–518.  https://doi.org/10.1007/BF01337948CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  • Dominik Kiefer
    • 1
    Email author
  • Jens Gibmeier
    • 1
  • Fabian Wilde
    • 2
  • Felix Beckmann
    • 2
  1. 1.Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-WK)KarlsruheGermany
  2. 2.Institute of Materials Research, Helmholtz-Zentrum Geesthacht (HZG)GeesthachtGermany

Personalised recommendations