Advertisement

Site Preference of the Alloying Additions on Mechanical Properties of L12 Ni3Co Alloys

  • Peng Liu
  • Dengfu ChenEmail author
  • Pei Xu
  • Mujun Long
  • Huamei Duan
  • Jie Yang
Conference paper
  • 48 Downloads
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

The site preference and alloying effects of transition metal elements M (M = W, Nb, Ta) on mechanical properties of L12 NiCo-based alloys are investigated by density functional theory. The formation enthalpy (ΔHf) and substitution formation enthalpy (\( E_{\text{site}} \)) are calculated to prediction the site preference of elements M. The results indicate that the three elements all tend to replace Ni site. The mechanical properties (elastic properties and hardness) calculations show that the alloying elements deteriorate the ductility and remarkably improve the hardness of the Ni3Co alloys. Ni23NbCo8 possesses the lowest ductility and the highest hardness. Ni23TaCo8 displays the highest shear modulus (G) and Young’s modulus (E). The anisotropic factors, 3D directional Young’s modulus, predict Ni23MCo8 alloys are all anisotropic materials, and the degree of anisotropy is small. Further analyses on electron localization function (ELF) demonstrate that mechanical properties are closely connected with the bonding nature of the alloys.

Keywords

Anisotropic factors First-principle Hardness Mechanical properties Site preference 

Notes

Acknowledgements

This study was financially supported by the Natural Science Foundation of China (NSFC) under Project Nos. 51874060, 51874059, and 51504048.

References

  1. 1.
    Farzaneh M, Raeissi K, Golozar M (2010) Effect of current density on deposition process and properties of nanocrystalline Ni–Co–W alloy coatings. J Alloy Compd 489:488–492CrossRefGoogle Scholar
  2. 2.
    Tanase S, Tanase DP, Dobromir M, Georgescu V (2011) Morphology, magnetic, magnetoresistance and optical properties of Co–Ni–Mo alloys thin films. Appl Surf Sci 257:10903–10909CrossRefGoogle Scholar
  3. 3.
    Theeratatpong K, Danchaivijit S, Boonyongmaneerat Y (2014) Effects of co content and heat treatment on mechanical properties of electrolessly deposited Ni–Co–P alloys. Surf Interface Anal 46:276–282CrossRefGoogle Scholar
  4. 4.
    Perdew J, Perdew JP (1986) Phys Rev B 33:8822Google Scholar
  5. 5.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671CrossRefGoogle Scholar
  6. 6.
    Monkhorst HJ (1976) Special points for Brillouin-zone integrations. Phys Rev B: Condens Matter 16:1748–1749Google Scholar
  7. 7.
    Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc Sect A, 65:349Google Scholar
  8. 8.
    Wang F, Holec D, Odén M, Muecklich F, Abrikosov IA, Tasnadi F (2017) Systematic ab initio investigation of the elastic modulus in quaternary transition metal nitride alloys and their coherent multilayers. Acta Mater 127:124–132CrossRefGoogle Scholar
  9. 9.
    Hill R (1952) Proc Phys Soc, London, Sect A 65:349Google Scholar
  10. 10.
    Wu J, Bo Z, Zhan Y (2017) Explorations on TiOsX (X = B, C, N, O and Si) alloys for potential superhard materials from first-principle calculation. J Phys Chem Solids 104:207–213CrossRefGoogle Scholar
  11. 11.
    Ranganathan SI, Ostoja-Starzewski M (2008) Universal elastic anisotropy index. Phys Rev Lett 101:055504CrossRefGoogle Scholar
  12. 12.
    Zhang X, Lv Y, Liu C, Wang F, Jiang W (2017) Site preference of transition-metal elements additions on mechanical and electronic properties of B2 DyCu-based alloys. Mater Des 133:476–486CrossRefGoogle Scholar
  13. 13.
    Chen X-Q, Niu H, Li D, Li Y (2011) Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19:1275–1281CrossRefGoogle Scholar
  14. 14.
    Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  • Peng Liu
    • 1
    • 2
  • Dengfu Chen
    • 1
    • 2
    Email author
  • Pei Xu
    • 1
    • 2
  • Mujun Long
    • 1
    • 2
  • Huamei Duan
    • 1
    • 2
  • Jie Yang
    • 1
    • 2
  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingChina
  2. 2.Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New MaterialsChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations