Advertisement

Preparation of CoCrFeNi High-Entropy Alloy via Electro-Deoxidation of Metal Oxides

  • Yu Yang
  • Tongxiang Ma
  • Mengjun Hu
  • Pengjie Liu
  • Liangying Wen
  • Liwen Hu
  • Meilong HuEmail author
Conference paper
  • 267 Downloads
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

High-entropy alloys (HEAs) have attracted extensive attention due to their excellent properties for various applications. In this work, single-phase equiatomic CoCrFeNi high-entropy alloy (HEA) was prepared by one-step electrolysis of solid oxides in molten CaCl2 at 900 °C and the cathodic reduction mechanism is discussed. The effect of solid oxides porosity on the current efficiency was investigated using X-ray diffractograms and oxygen/nitrogen/hydrogen analyzer. Varying the porosity of solid oxides, the CoCrFeNi HEAs ranging from powders to solid block could be prepared which provides a possibility for additive manufacturing. The aim of the current study is to highlight the versatility of a simple electrochemical method for HEAs preparation in a straightforward, low-energy, and cost-affordable process.

Keywords

High-entropy alloys FFC-Cambridge process Cathodic reduction mechanism Current efficiency 

Notes

Acknowledgements

Funding: Graduate Scientific Research and Innovation Foundation of Chongqing (CYB19001).

References

  1. 1.
    Yeh JW, Chen SK, Lin SJ (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6(5):299–303CrossRefGoogle Scholar
  2. 2.
    Zhang Y, Zuo TT, Tang Z (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1–93CrossRefGoogle Scholar
  3. 3.
    Singh S, Wanderka N, Murty BS (2011) Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater 59(1):182–190CrossRefGoogle Scholar
  4. 4.
    Wang XF, Zhang Y, Qiao Y (2007) Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 15(3):357–362CrossRefGoogle Scholar
  5. 5.
    Senkov ON, Wilks GB, Scott JM (2011) Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19(5):698–706CrossRefGoogle Scholar
  6. 6.
    Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1–2):1–184CrossRefGoogle Scholar
  7. 7.
    Murty BS, Ranganathan S (1998) Novel materials synthesis by mechanical alloying/milling. Int Mater Rev 43(3):101–141CrossRefGoogle Scholar
  8. 8.
    Chen YL, Tsai CW, Juan CC (2010) Amorphization of equimolar alloys with HCP elements during mechanical alloying. J Alloy Compd 506(1):210–215CrossRefGoogle Scholar
  9. 9.
    Chang SY, Lin SY, Huang YC (2010) Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)-Nx multi-component coatings. Surf Coat Technol 204(20):3307–3314CrossRefGoogle Scholar
  10. 10.
    Dolique V, Thomann AL, Brault P (2011) High-entropy alloys deposited by magnetron sputtering. IEEE Trans Plasma Sci 39(11):2478–2479CrossRefGoogle Scholar
  11. 11.
    Yao CZ, Zhang P, Liu M (2008) Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy. Electrochim Acta 53(28):8359–8365CrossRefGoogle Scholar
  12. 12.
    Chen GZ, Fray DJ, Farthing TW (2000) Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407(6802):361CrossRefGoogle Scholar
  13. 13.
    Jiao H, Wang M, Tu J, Jiao S (2018) Production of AlCrNbTaTi high entropy alloy via electro-deoxidation of metal oxides. J Electrochem Soc 165(11):D574–D579CrossRefGoogle Scholar
  14. 14.
    Wang B, Huang J, Fan J (2017) Preparation of FeCoNiCrMn high entropy alloy by electrochemical reduction of solid oxides in molten salt and its corrosion behavior in aqueous solution. J Electrochem Soc 164(14):E575–E579CrossRefGoogle Scholar
  15. 15.
    Sure J, Vishnu DSM, Schwandt C (2019) Electrochemical conversion of oxide spinels into high-entropy alloy. J Alloy Compd 776:133–141CrossRefGoogle Scholar
  16. 16.
    Sure J, Vishnu DSM, Schwandt C (2017) Direct electrochemical synthesis of high-entropy alloys from metal oxides. Appl Mater Today 9:111–121CrossRefGoogle Scholar
  17. 17.
    Li W, Jin X, Huang F (2010) Metal-to-oxide molar volume ratio: the overlooked barrier to solid-state electroreduction and a “green” bypass through recyclable NH4HCO3. Angew Chem Int Ed 49(18):3203–3206CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  • Yu Yang
    • 1
    • 2
  • Tongxiang Ma
    • 1
    • 2
  • Mengjun Hu
    • 1
    • 2
  • Pengjie Liu
    • 1
    • 2
  • Liangying Wen
    • 1
    • 2
  • Liwen Hu
    • 1
    • 2
  • Meilong Hu
    • 1
    • 2
    Email author
  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingPeople’s Republic of China
  2. 2.Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New MaterialsChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations