Advertisement

Fabrication of Bilayer Nanoporous Copper from Rapidly Solidified Al70Cu30 Ribbons by Chemical Dealloying Technique

  • Hailan Ma
  • Bingge ZhaoEmail author
  • Kai Ding
  • Yulai GaoEmail author
Conference paper
  • 270 Downloads
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

In this paper, nanoporous copper (NPC) was prepared by chemical dealloying of the Al70Cu30 (at.%) melt-spun alloy. The dealloying of Al70Cu30 in 4.2 vol% HCl solution facilitates the bilayer NPC with various morphology. The results show that the formation of pores is simultaneously controlled by the dissolution of Al and the diffusion of Cu atoms in the alloy/electrolyte interface. In particular, the NPC presents a bimodal pore size distribution: larger pores with size of 25–50 nm and smaller pores with size of 3–4 nm. The specific surface area of the NPC is determined as 25.24 ± 0.08 m2 g−1 through N2 adsorption/desorption experiment and Brunauer–Emmett–Teller (BET) analysis. Such high porosity and surface-area-to-volume ratio of the NPC reveal its potential application in catalysts, sensors, actuators, fuel cells, etc.

Keywords

Bilayer nanoporous copper Al–Cu ribbons Rapid solidification Dealloying Bimodal pore size distribution 

Notes

Acknowledgements

This study was supported by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and National Natural Science Foundation of China (Grant Nos. 51671123, 51171105, and 50971086).

References

  1. 1.
    Semiz L, Abdullayeva N, Sankir M (2018) Nanoporous Pt and Ru catalysts by chemical dealloying of Pt-Al and Ru-Al alloys for ultrafast hydrogen generation. J Alloys Compd 744(16):110–115CrossRefGoogle Scholar
  2. 2.
    Kristien B, Jean-Michel F, Filip F, Wim L, Steven L, Andrew C, Margit S, Gustaaf B, Bruno G, Paul D (2004) Realization and characterization of porous gold for increased protein coverage on acoustic sensors. Anal Chem 76(15):4299–4306CrossRefGoogle Scholar
  3. 3.
    Detsi E, Sellès MS, Onck PR, De Hosson JTM (2013) Nanoporous silver as electrochemical actuator. Scr Mater 69(2):195–198CrossRefGoogle Scholar
  4. 4.
    Chen LY, Yu JS, Fujita T, Chen MW (2010) Nanoporous copper with tunable nanoporosity for SERS applications. Adv Funct Mater 19(8):1221–1226CrossRefGoogle Scholar
  5. 5.
    Li R, Liu XJ, Wang H, Wu Y, Chu XM, Lu ZP (2014) Nanoporous silver with tunable pore characteristics and superior surface enhanced Raman scattering. Corros Sci 84(8):159–164CrossRefGoogle Scholar
  6. 6.
    Xue Y, Scaglione F, Rizzi P, Battezzati L (2017) Improving the chemical dealloying of amorphous Au alloys. Corros Sci 127:141–146CrossRefGoogle Scholar
  7. 7.
    Erlebacher J, Dimitrov N, Sieradzki K (2001) Evolution of nanoporosity in dealloying. Nature 410(6827):450–453CrossRefGoogle Scholar
  8. 8.
    Ding Y, Kim Y, Erlebacher J (2010) Nanoporous gold leaf: “ancient technology”/advanced material. Adv Mater 16(21):1897–1900CrossRefGoogle Scholar
  9. 9.
    Zinchenko O, Raedt HA, Detsi E, Onck PR, Hosson JTMD (2013) Nanoporous gold formation by dealloying: a metropolis monte carlo study. Comput Phys Commun 184(6):1562–1569CrossRefGoogle Scholar
  10. 10.
    Song TT, Gao YL, Zhang ZH, Zhai QJ (2011) Dealloying behavior of rapidly solidified Al-Ag alloys to prepare nanoporous Ag in inorganic and organic acidic media. CrystEngComm 13(23):7058–7059CrossRefGoogle Scholar
  11. 11.
    Song TT, Gao YL, Zhang ZH, Zhai QJ (2012) Influence of magnetic field on dealloying of Al-25Ag alloy and formation of nanoporous Ag. CrystEngComm 14(10):3694–3701CrossRefGoogle Scholar
  12. 12.
    Snyder J, Asanithi P, Dalton AB, Erlebacher J (2010) Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv Mater 20(24):4883–4886CrossRefGoogle Scholar
  13. 13.
    Wang X, Sun J, Chi Z, Kou T, Zhang Z (2012) On the microstructure, chemical composition, and porosity evolution of nanoporous alloy through successive dealloying of ternary Al–Pd–Au precursor. J Phys Chem C 116(24):13271–13280CrossRefGoogle Scholar
  14. 14.
    Wittstock A, Biener J, Erlebacher J, Baeumer M (2011) Nanoporous gold: from an ancient technology to a high-tech material. RSC Publishing, pp 224–245Google Scholar
  15. 15.
    Ding Y, Erlebacher J (2003) Nanoporous metals with controlled multimodal pore size distribution. J Amer Chem Soc 125(26):7772–7773CrossRefGoogle Scholar
  16. 16.
    Song TT, Yan M, Qian M (2018) The enabling role of dealloying in the creation of specific hierarchical porous metal structures—A review. Corros Sci 134:78–98CrossRefGoogle Scholar
  17. 17.
    Zhen Q, WeissmüLler JR (2013) Hierarchical nested-network nanostructure by dealloying. ACS Nano 7(7):5948–5954CrossRefGoogle Scholar
  18. 18.
    Hong J, Wang X, Zhao C, Chi Z, Zhang Z (2011) Formation, control and functionalization of nanoporous silver through changing dealloying media and elemental doping. CrystEngComm 13(7):2617–2628CrossRefGoogle Scholar
  19. 19.
    Kong Q, Lian L, Liu Y, Zhang J (2014) Fabrication and compression properties of bulk hierarchical nanoporous copper with fine ligament. Mater Lett 127:59–62CrossRefGoogle Scholar
  20. 20.
    Hu ZY, Wang PP, Fu EG, Wang XJ, Yan XQ, Xu P, Wu ZM, Zhao YB, Liang YX (2018) Bilayer nanoporous copper films with various morphology features synthesized by one-step dealloying. J Alloys Compd 754:26–31CrossRefGoogle Scholar
  21. 21.
    Fei C, Xi C, Zou L, Yao Y, Lin Y, Qiang S, Lavernia EJ, Zhang L (2016) Fabrication and mechanical behavior of bulk nanoporous Cu via chemical dealloying of Cu–Al alloys. Mater Sci Eng A 660:241–250Google Scholar
  22. 22.
    Huang LJ, Liang GY, Sun ZB, Wu DC (2006) Electrode properties of melt-spun Mg–Ni–Nd amorphous alloys. J Power Sources 160(1):684–687CrossRefGoogle Scholar
  23. 23.
    Kamal M, El-Bediwi AB, El-Ashram T (2004) The effect of rapid solidification on the structure, decomposition behavior, electrical and mechanical properties of the Sn–Cd binary alloys. J Mater Sci: Mater Electron 15(4):211–217Google Scholar
  24. 24.
    Kurz W, Trivedi R (1994) Rapid solidification processing and microstructure formation. Mater Sci Eng A 179(94):46–51Google Scholar
  25. 25.
    Jia S, Song TT, Zhao BG, Zhai QJ, Gao YL (2014) Regular Fe3O4 octahedrons with excellent soft magnetic properties prepared by dealloying technique. J Alloys Compd 585:580–586CrossRefGoogle Scholar
  26. 26.
    Song TT, Gao YL, Zhang ZH, Zhai QJ (2013) Microstructure and phase evolution during the dealloying of bi-phase Al–Ag alloy. Corros Sci 68(1):256–262CrossRefGoogle Scholar
  27. 27.
    Liu W, Zhang S, Li N, Zheng J, An S, Xing Y (2012) Dealloying behavior of dual-phase Al 15 at.% Cu alloy in an acidic solution. Int J Electrochem Sci 7(3):2240–2253Google Scholar
  28. 28.
    Feng J, Hill AH, Andrew H, Aaron B, Chadwick AV, Bruce PG (2008) Synthesis of ordered mesoporous NiO with crystalline walls and a bimodal pore size distribution. J Amer Chem Soc 130(15):5262–5266CrossRefGoogle Scholar
  29. 29.
    Zhang ZH, Yan W, Zhen Q, Lin J, Bian X (2009) Nanoporous gold ribbons with bimodal channel size distributions by chemical dealloying of Al–Au alloys. J Phys Chem C 113(4):1308–1314CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  1. 1.Center for Advanced Solidification Technology (CAST), School of Materials Science and EngineeringShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations