Advertisement

Effects of Precursor Concentration on the Surface Morphology and Electrocatalytic Performance of Ti/IrO2–RuO2–SiO2 Anode for Oxygen Evolution Reaction

  • Bao Liu
  • Shuo Wang
  • Qiankun Jing
  • Chengyan WangEmail author
Conference paper
  • 366 Downloads
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Oxygen evolution reaction (OER) as a counter reaction plays a key role in metal electrowinning. The development of an efficient, long-lived and low-cost anode for OER is of increasingly significance for metal electrowinning. IrO2–RuO2–SiO2 ternary oxide film coated on titanium substrate was prepared using sol-gel route, followed by thermal decomposition method. The effects of precursor concentration on the surface morphology and electrocatalytic properties of Ti/IrO2–RuO2–SiO2 anode were investigated by physical characterization and electrochemical measurements. It was found that the crystallinity of the oxide coating decreased with increasing precursor concentration. Increasing precursor concentration increased the amount of cracks of the oxide coating. The electrocatalytic activity of the prepared anode improved, while the electrocatalytic stability decreased with the increase in precursor concentration. Considering the electrocatalytic activity and stability, precursor concentration of 0.2–0.3 mol L−1 is most suitable for the preparation of the Ti/IrO2–RuO2–SiO2 anode.

Keywords

Oxygen evolution reaction Oxide coating Anode Electrocatalytic performance 

Notes

Acknowledgements

This work was financially supported by the Innovative Talents Foundation Project of University of Science and Technology Beijing, the National Natural Science Foundation of China (No. U1802253), the National Natural Science Foundation of China (No. 51674026), the Guangxi Innovation-Driven Development Project (No. AA18242042-1) and the Beijing Municipal Natural Science Foundation (No. 2182040).

References

  1. 1.
    Marshall AT, Sunde S, Tsypkin M et al (2007) Performance of a PEM water electrolysis cell using IrxRuyTazO2 electrocatalysts for the oxygen evolution electrode. Int J Hydrogen Energ 32:2320–2324CrossRefGoogle Scholar
  2. 2.
    Marshall A, Borresen B, Hagen G et al (2006) Iridium oxide-based nanocrystalline particles as oxygen evolution electrocatalysts. Russ J Electrochem 42:1134–1140CrossRefGoogle Scholar
  3. 3.
    Siracusano S, Baglio V, Di Blasi A et al (2010) Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO2 anode electrocatalyst. Int. J. Hydrogen Energ 35:5558–5568CrossRefGoogle Scholar
  4. 4.
    Xu W, Haarberg GM, Sunde S et al (2017) Calcination temperature dependent catalytic activity and stability of IrO2–Ta2O5 anodes for oxygen evolution reaction in aqueous sulfate electrolytes. J Electrochem Soc 164:F895–F900CrossRefGoogle Scholar
  5. 5.
    Hu JM, Meng HM, Zhang JQ et al (2002) Degradation mechanism of long service life Ti/IrO2–Ta2O5 oxide anodes in sulphuric acid. Corros Sci 44:1655–1668CrossRefGoogle Scholar
  6. 6.
    Hoseinieh SM, Ashrafizadeh F (2013) Influence of electrolyte composition on deactivation mechanism of a Ti/Ru0.25Ir0.25Ti0.5O2 electrode. Ionics 19:113–125CrossRefGoogle Scholar
  7. 7.
    Nguyen TD, Scherer GG, Xu ZJ (2016) A facile synthesis of size-controllable IrO2 and RuO2 nanoparticles for the oxygen evolution reaction. Electrocatalysis 7:420–427CrossRefGoogle Scholar
  8. 8.
    Audichon T, Mayousse E, Morisset S et al (2014) Electroactivity of RuO2–IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by solar profile. Int J Hydrogen Energ 39:16785–16796CrossRefGoogle Scholar
  9. 9.
    Zhao Y, Hernandez-Pagan EA, Vargas-Barbosa NM et al (2011) A high yield synthesis of ligand-free iridium oxide nanoparticles with high electrocatalytic activity. J Phys Chem Lett 2:402–406CrossRefGoogle Scholar
  10. 10.
    Kadakia K, Datta MK, Velikokhatnyi OI et al (2012) Novel (Ir, Sn, Nb)O2 anode electrocatalysts with reduced noble metal content for PEM based water electrolysis. Int J Hydrogen Energ 37:3001–3013CrossRefGoogle Scholar
  11. 11.
    Zhang JJ, Hu JM, Zhang JQ et al (2011) IrO2–SiO2 binary oxide films: geometric or kinetic interpretation of the improved electrocatalytic activity for the oxygen evolution reaction. Int J Hydrogen Energ 36:5218–5226CrossRefGoogle Scholar
  12. 12.
    Yan ZW, Zhang HM, Feng ZQ et al (2017) Promotion of in situ TiNx interlayer on morphology and electrochemical properties of titanium based IrO2–Ta2O5 coated anode. J Alloys Compd 708:1081–1088CrossRefGoogle Scholar
  13. 13.
    Nijjer S, Thonstad J, Haarberg GM (2001) Cyclic and linear voltammetry on Ti/IrO2–Ta2O5–MnOx electrodes in sulfuric acid containing Mn2+ ions. Electrochim Acta 46:3503–3508CrossRefGoogle Scholar
  14. 14.
    Chen XM, Chen GH (2005) Stable Ti/RuO2–Sb2O5–SnO2 electrodes for O2 evolution. Electrochim Acta 50:4155–4159CrossRefGoogle Scholar
  15. 15.
    Ye ZG, Meng HM, Sun DB (2008) New degradation mechanism of Ti/IrO2–MnO2 anode for oxygen evolution in 0.5 M H2SO4 solution. Electrochim Acta 53:5639–5643CrossRefGoogle Scholar
  16. 16.
    Iwakura C, Sakamoto K (1985) Effect of active layer composition on the service life of (SnO2 and RuO2)-coated Ti electrodes in sulfuric acid solution. J Electrochem Soc 132:2420–2423CrossRefGoogle Scholar
  17. 17.
    Mazhari Abbasi H, Jafarzadeh K, Mirali SM (2010) An investigation of the effect of RuO2 on the deactivation and corrosion mechanism of a Ti/IrO2 + Ta2O5 coating in an OER application. J Electroanal Chem 648:119–127CrossRefGoogle Scholar
  18. 18.
    Liu B, Wang C, Chen Y (2018) Surface determination and electrochemical behavior of IrO2–RuO2–SiO2 ternary oxide coatings in oxygen evolution reaction application. Electrochim Acta 264:350–357CrossRefGoogle Scholar
  19. 19.
    Ye ZG, Huang GB, Liu GW et al (2014) Influence of preparation process on electrocatalytic activity of Ti/IrO2–MnO2 anodes for oxygen evolution in 0.5 M Na2SO4 solution. Mater. Res. Innov 18:440–446Google Scholar
  20. 20.
    Reier T, Teschner D, Lunkenbein T et al (2014) Electrocatalytic oxygen evolution on iridium oxide: uncovering catalyst-substrate interactions and active iridium oxide species. J Electrochem Soc 161:F876–F882CrossRefGoogle Scholar
  21. 21.
    Lee HW, Kim H (2011) Oxidized iridium nanodendrites as catalysts for oxygen evolution reactions. Catal Commun 12:408–411CrossRefGoogle Scholar
  22. 22.
    Roginskaya YE, Varlamova TV, Goldstein MD et al (1991) Formation, structure and electrochemical properties of IrO2–RuO2 oxide electrodes. J Mat Chem Phys 30:101–113CrossRefGoogle Scholar
  23. 23.
    Burke LD, Murphy OJ (1979) Cyclic voltammetry as a technique for determining the surface area of RuO2 electrodes. J Electroanal Chem 96:19–27CrossRefGoogle Scholar
  24. 24.
    Xu W, Tayal J, Basu S et al (2011) Nano-crystalline RuxSn1−xO2 powder catalysts for oxygen evolution reaction in proton exchange membrane water electrolysers. Int J Hydrogen Energ 36:14796–14804CrossRefGoogle Scholar
  25. 25.
    Audichon T, Morisset S, Napporn TW et al (2015) Effect of adding CeO2 to RuO2–IrO2 mixed nanocatalysts: activity towards the oxygen evolution reaction and stability in acidic media. ChemElectroChem 2:1128–1137CrossRefGoogle Scholar
  26. 26.
    Ardizzone S, Fregonara G, Trasatt S (1990) Inner and outer active surface of RuO2 electrodes. Electrochim Acta 35:263–267CrossRefGoogle Scholar
  27. 27.
    Ye ZG, Meng HM, Sun DB (2008) New degradation mechanism of Ti/IrO2–MnO2 anode for oxygen evolution in 0.5 M H2SO4 solution. Electrochim Acta 53:5639–5643CrossRefGoogle Scholar
  28. 28.
    Martelli GN, Ornelas R, Faita G (1994) Deactivation mechanisms of oxygen evolving anodes at high current densities. Electrochim Acta 39:1551–1558CrossRefGoogle Scholar
  29. 29.
    Cherevko S, Reier T, Zeradjanin AR et al (2014) Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment. Electrochem Commun 48:81–85CrossRefGoogle Scholar
  30. 30.
    Gorodetskii V, Neburchilov V (2005) Titanium anodes with active coatings based on iridium oxides: the corrosion resistance and electrochemical behavior of anodes coated by mixed iridium, ruthenium, and titanium oxides. Russ J Electrochem 41:971–978CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  • Bao Liu
    • 1
  • Shuo Wang
    • 1
  • Qiankun Jing
    • 1
  • Chengyan Wang
    • 1
    Email author
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations