Advertisement

Quantum Dots Application in Biomolecules Interaction and Bioimaging

  • Ellappan VaishnaviEmail author
  • Rajalingam Renganathan
Chapter
  • 48 Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

The semiconductor nanocrystals known as quantum dots (QDs) have become a potential candidate for next generation fluorophores. Attention in QDs research is focussed on a wide range of applications like sensor, photovoltaic cells, catalysis, biolabelling, early cancer detection, etc. The unique morphology, tunable optical properties, photostability and flexibility for surface modification by biomolecules of QDs has provoked the scientific community to unravel many problems in biological processes. In view of these scientifically advantageous and distinguishable characteristics of QDs, an overview of research on the interaction of Cadmium telluride QDs with biomolecules and bioimaging applications and limitations of QDs is presented in this chapter.

Notes

Acknowledgements

EV thank DBT star college scheme and DST FIST for the funds and facilities provided to Sri GVG visalakshi college for women, Udumalpet. EV and RR thank DST for the project (DST/SR/S1/PC-12/2011), (DST/SR/NM/NS-26/2013) and UGC for emeritus fellowship (UGC-EF-7855,2016-2017).

References

  1. Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933–937.  https://doi.org/10.1126/science.271.5251.933.CrossRefGoogle Scholar
  2. Allen, P. M., & Bawendi, M. G. (2008). Ternary I−III−VI quantum dots luminescent in the red to near-infrared. Journal of the American Chemical Society, 130, 9240–9241.  https://doi.org/10.1021/ja8036349.
  3. Alshehri, A., Malik, M. A., Khan, Z., Al-Thabaiti, S. A., & Hasan, N. (2017). Biofabrication of Fe nanoparticles in aqueous extract of Hibiscus sabdariffa with enhanced photocatalytic activities RSC. Advances, 7, 25149–25159.  https://doi.org/10.1039/c7ra01251a.CrossRefGoogle Scholar
  4. Baba, K., & Nishida, K. (2012). Single-molecule tracking in living cells using single quantum dot applications. Theranostics, 2, 655–667.  https://doi.org/10.7150/thno.3890.CrossRefGoogle Scholar
  5. Bagalkot, V., Zhang, L., Levy-Nissenbaum, E., Jon, S., Kantoff, P. W., Langer, R., et al. (2007). Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Letters, 7, 3065–3070.  https://doi.org/10.1021/nl071546n.CrossRefGoogle Scholar
  6. Ballou, B., Lagerholm, B. C., Ernst, L. A., Bruchez, M. P., & Waggoner, A. S. (2004). Noninvasive imaging of quantum dots in mice. Bioconjugate Chemistry, 15, 79–86.  https://doi.org/10.1021/bc034153y.CrossRefGoogle Scholar
  7. Barroso, M. M. (2011). Quantum dots in cell biology. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 59, 237–251.  https://doi.org/10.1369/0022155411398487.CrossRefGoogle Scholar
  8. Bilen, B., Gokbulut, B., Kafa, U., Heves, E., Inci, M. N., & Unlu, M. B. (2018). Scanning acoustic microscopy and time-resolved fluorescence spectroscopy for characterization of atherosclerotic plaques. Scientific Reports, 8, 14378.  https://doi.org/10.1038/s41598-018-32788-2.CrossRefGoogle Scholar
  9. Binns, C. (2010). Nanoparticles everywhere. In Introduction to nanoscience and nanotechnology (pp 33–52). New York: Wiley.  https://doi.org/10.1002/9780470618837.ch2.
  10. Bruchez, M., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013–2016.  https://doi.org/10.1126/science.281.5385.2013.CrossRefGoogle Scholar
  11. Brus, L. (1986). Zero-dimensional “excitons” in semiconductor clusters. IEEE Journal of Quantum Electronics, 22, 1909–1914.  https://doi.org/10.1109/jqe.1986.1073184.CrossRefGoogle Scholar
  12. Brus, L. (1998). Chemical approaches to semiconductor nanocrystals. Journal of Physics and Chemistry of Solids, 59, 459–465.  https://doi.org/10.1016/S0022-3697(97)00201-1.CrossRefGoogle Scholar
  13. Byers, R. J., & Hitchman, E. R. (2011). Quantum dots brighten biological imaging. Progress in Histochemistry and Cytochemistry, 45, 201–237.  https://doi.org/10.1016/j.proghi.2010.11.001.CrossRefGoogle Scholar
  14. Charron, G., Stuchinskaya, T., Edwards, D. R., Russell, D. A., & Nann, T. (2012). Insights into the mechanism of quantum dot-sensitized singlet oxygen production for photodynamic therapy. The Journal of Physical Chemistry C, 116, 9334–9342.  https://doi.org/10.1021/jp301103f.CrossRefGoogle Scholar
  15. Chen, L., Wang, Y., Fu, X., & Chen, L. (2014). Fluorescent nanoprobes. In Novel optical nanoprobes for chemical and biological analysis (pp. 49–74). Berlin: Springer.  https://doi.org/10.1007/978-3-662-43624-0
  16. Chen, X., Guo, Z., & Miao, P. (2018). One-pot synthesis of GSH-Capped CdTe quantum dots with excellent biocompatibility for direct cell imaging. Heliyon, 4, e00576.  https://doi.org/10.1016/j.heliyon.2018.e00576.CrossRefGoogle Scholar
  17. Colvin, V. L., Schlamp, M. C., & Alivisatos, A. P. (1994). Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 370, 354–357.  https://doi.org/10.1038/370354a0.CrossRefGoogle Scholar
  18. Courtney, C. M., Goodman, S. M., McDaniel, J. A., Madinger, N. E., Chatterjee, A., & Nagpal, P. (2016). Photoexcited quantum dots for killing multidrug-resistant bacteria. Nature Materials, 15, 529–534.  https://doi.org/10.1038/nmat4542.CrossRefGoogle Scholar
  19. Dahan, M., Lévi, S., Luccardini, C., Rostaing, P., Riveau, B., & Triller, A. (2003). Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science, 302, 442–445.  https://doi.org/10.1126/science.1088525.CrossRefGoogle Scholar
  20. Dey, N. S., & Rao, M. B. (2011). Quantum dot: Novel carrier for drug delivery Int J Res Pharm. Biomed Sci, 2, 448–458.Google Scholar
  21. Díaz, S. A., et al. (2018). Quantum dots as Förster resonance energy transfer acceptors of lanthanides in time-resolved bioassays. Applied Nano Materials, 1, 3006–3014.  https://doi.org/10.1021/acsanm.8b00613.CrossRefGoogle Scholar
  22. Donegan, J. F. (2013). Cadmium Telluride Quantum Dots: Advances and Applications, 23.Google Scholar
  23. Eastman, P. S., et al. (2006). Qdot nanobarcodes for multiplexed gene expression analysis. Nano Letters, 6, 1059–1064.  https://doi.org/10.1021/nl060795t.CrossRefGoogle Scholar
  24. Ekimov, A. I., & Onushchenko, A. A. (1981). Quantum size effect in three-dimensional microscopic semiconductor crystals. Journal of Experimental and Theoretical Physics Letters, 34, 345–348.Google Scholar
  25. El-Sayed, M. A. (2004). Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Accounts of Chemical Research, 37, 326–333.  https://doi.org/10.1021/ar020204f.
  26. Eychmüller, A. (2000). Structure and photophysics of semiconductor nanocrystals. The Journal of Physical Chemistry B, 104, 6514–6528.  https://doi.org/10.1021/jp9943676.CrossRefGoogle Scholar
  27. Frasco, M., & Chaniotakis, N. (2009). Semiconductor quantum dots in chemical sensors and biosensors. Sensors, 9, 7266–7286.  https://doi.org/10.3390/s90907266.CrossRefGoogle Scholar
  28. Fu, A., et al. (2006). Semiconductor quantum rods as single molecule fluorescent biological labels. Nano Letters, 7, 179–182.  https://doi.org/10.1021/nl0626434.CrossRefGoogle Scholar
  29. Gaponik, N., et al. (2002). Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. The Journal of Physical Chemistry B, 106, 7177–7185.  https://doi.org/10.1021/jp025541k.CrossRefGoogle Scholar
  30. Guo, R., Zhang, L., Qian, H., Li, R., Jiang, X., & Liu, B. (2010). Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy. Langmuir, 26, 5428–5434.  https://doi.org/10.1021/la903893n.CrossRefGoogle Scholar
  31. Hamada, M., et al. (2013). Situ photochemical surface passivation of CdSe/ZnS quantum dots for quantitative light emission and enhanced photocurrent response in solar cells. The Journal of Physical Chemistry C, 118, 2178–2186.  https://doi.org/10.1021/jp4083882.CrossRefGoogle Scholar
  32. Han, R., Yu, M., Zheng, Q., Wang, L., Hong, Y., & Sha, Y. (2009). A facile synthesis of small-sized, highly photoluminescent, and monodisperse CdSeS QD/SiO2 for live cell imaging. Langmuir, 25, 12250–12255.  https://doi.org/10.1021/la9016596.
  33. He, C., Liu, Z., Wu, Q., Zhao, J., Liu, R., Liu, B., et al. (2018). Ratiometric fluorescent biosensor for visual discrimination of cancer cells with different telomerase expression levels. ACS Sensors, 3, 757–762.  https://doi.org/10.1021/acssensors.8b00059.CrossRefGoogle Scholar
  34. Hong, E. J., Choi, D. G., & Shim, M. S. (2016). Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharmaceutica Sinica B, 6, 297–307.  https://doi.org/10.1016/j.apsb.2016.01.007.CrossRefGoogle Scholar
  35. Hoshino, A., et al. (2004). Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Letters, 4, 2163–2169.  https://doi.org/10.1021/nl048715d.CrossRefGoogle Scholar
  36. Howarth, M., Takao, K., Hayashi, Y., & Ting, A. Y. (2005). Targeting quantum dots to surface proteins in living cells with biotin ligase. Proceedings of the National Academy of Sciences of the United States of America, 102, 7583–7588.  https://doi.org/10.1073/pnas.0503125102.CrossRefGoogle Scholar
  37. Howes, P., Green, M., Levitt, J., Suhling, K., & Hughes, M. (2010). Phospholipid encapsulated semiconducting polymer nanoparticles: their use in cell imaging and protein attachment. Journal of the American Chemical Society, 132, 3989–3996.  https://doi.org/10.1021/ja1002179.CrossRefGoogle Scholar
  38. Jaiswal, J. K., Goldman, E. R., Mattoussi, H., & Simon, S. M. (2004). Use of quantum dots for live cell imaging. Nature Methods, 1, 73.  https://doi.org/10.1038/nmeth1004-73.CrossRefGoogle Scholar
  39. Jaiswal, J. K., Mattoussi, H., Mauro, J. M., & Simon, S. M. (2002). Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnology, 21, 47.  https://doi.org/10.1038/nbt767.CrossRefGoogle Scholar
  40. Jamieson, T., Bakhshi, R., Petrova, D., Pocock, R., Imani, M., & Seifalian, A. M. (2007). Biological applications of quantum dots. Biomaterials, 28, 4717–4732.  https://doi.org/10.1016/j.biomaterials.2007.07.014.CrossRefGoogle Scholar
  41. Jiang, G., Susha, A. S., Lutich, A. A., Stefani, F. D., Feldmann, J., & Rogach, A. L. (2009). Cascaded FRET in conjugated polymer/quantum dot/dye-labeled DNA complexes for DNA hybridization detection. ACS Nano, 3, 4127–4131.  https://doi.org/10.1021/nn901324y.CrossRefGoogle Scholar
  42. Jin, S., Hu, Y., Gu, Z., Liu, L., & Wu, H.-C. (2011). Application of quantum dots in biological imaging. Journal of Nanomaterials, 2011, 1–13.  https://doi.org/10.1155/2011/834139.CrossRefGoogle Scholar
  43. Jin, T., Yoshioka, Y., Fujii, F., Komai, Y., Seki, J., & Seiyama, A. (2008). Gd3+-functionalized near-infrared quantum dots for in vivo dual modal (fluorescence/magnetic resonance) imaging. Chemical Communication, 5764–5766.  https://doi.org/10.1039/b812302k.
  44. Kim, D., et al. (2018). Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease. Nature Nanotechnology, 13, 812–818.  https://doi.org/10.1038/s41565-018-0179-y.CrossRefGoogle Scholar
  45. Kim, J. Y., Voznyy, O., Zhitomirsky, D., & Sargent, E. H. (2013). 25th anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances. Advanced Materials, 25, 4986–5010.  https://doi.org/10.1002/adma.201301947.
  46. Klostranec, J. M., & Chan, W. C. W. (2006). Quantum dots in biological and biomedical research: Recent progress and present challenges. Advanced Materials, 18, 1953–1964.  https://doi.org/10.1002/adma.200500786.CrossRefGoogle Scholar
  47. Lakowicz, J. R. (2006). Energy transfer. In Principles of fluorescence spectroscopy (pp. 443–475). Springer US.  https://doi.org/10.1007/978-0-387-46312-4_13.
  48. Li, J., & Zhu, J.-J. (2013). Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst, 138, 2506–2515.  https://doi.org/10.1039/c3an36705c.CrossRefGoogle Scholar
  49. Liu, S.-L., Wang, Z.-G., Zhang, Z.-L., & Pang, D.-W. (2016). Tracking single viruses infecting their host cells using quantum dots. Chemical Society Reviews, 45, 1211–1224.  https://doi.org/10.1039/c5cs00657k.CrossRefGoogle Scholar
  50. Liu, W., Howarth, M., Greytak, A. B., Zheng, Y., Nocera, D. G., Ting, A. Y., et al. (2008). Compact biocompatible quantum dots functionalized for cellular imaging. Journal of the American Chemical Society, 130, 1274–1284.  https://doi.org/10.1021/ja076069p.CrossRefGoogle Scholar
  51. Lu, H.-C. (2005). Luminescent semiconductor quantum dots: Synthesis, characterization and biological applications. Ph.D. Thesis, Technische Universität Dortmund, GermanyGoogle Scholar
  52. Lugo, K., Miao, X., Rieke, F., & Lin, L. Y. (2012). Remote switching of cellular activity and cell signaling using light in conjunction with quantum dots Biomed. Optics Express, 3, 447–454.  https://doi.org/10.1364/boe.3.000447.CrossRefGoogle Scholar
  53. Mattoussi, H., Mauro, J. M., Goldman, E. R., Anderson, G. P., Sundar, V. C., Mikulec, F. V., Bawendi, M. G. (2000). Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein. Journal of the American Chemical Society, 122, 12142–12150.  https://doi.org/10.1021/ja002535y.
  54. Mazumder, S., Dey, R., Mitra, M., Mukherjee, S., & Das, G. (2009). Biofunctionalized quantum dots in biology and medicine. Journal of Nanomaterials, 2009, 38.  https://doi.org/10.1155/2009/815734.CrossRefGoogle Scholar
  55. Medintz, I. L., et al. (2010). Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nature Materials, 9, 676.  https://doi.org/10.1038/nmat2811.CrossRefGoogle Scholar
  56. Michalet, X., et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307, 538–544.  https://doi.org/10.1126/science.1104274.
  57. Murray, C. B., Norris, D. J., Bawendi, M. G. (1993). Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 115, 8706–8715.  https://doi.org/10.1021/ja00072a025.
  58. Nirmal, M., & Brus, L. (1998). Luminescence photophysics in semiconductor nanocrystals. Accounts of Chemical Research, 32, 407–414.  https://doi.org/10.1021/ar9700320.CrossRefGoogle Scholar
  59. Oliveira, O. N., Jr., Iost, R. M., Siqueira, J. R., Jr., Crespilho, F. N., & Caseli, L. (2014). Nanomaterials for diagnosis: Challenges and applications in smart devices based on molecular recognition. ACS Applied Materials & Interfaces, 6, 14745–14766.  https://doi.org/10.1021/am5015056.CrossRefGoogle Scholar
  60. Ozkan, M. (2004). Quantum dots and other nanoparticles: What can they offer to drug discovery? Drug Discovery Today, 9, 1065–1071.  https://doi.org/10.1016/S1359-6446(04)03291-X.CrossRefGoogle Scholar
  61. Pathak, S., Cao, E., Davidson, M. C., Jin, S., & Silva, G. A. (2006). Quantum dot applications to neuroscience: New tools for probing neurons and glia. Journal of Neuroscience, 26, 1893–1895.  https://doi.org/10.1523/JNEUROSCI.3847-05.2006.CrossRefGoogle Scholar
  62. Patolsky, F., Gill, R., Weizmann, Y., Mokari, T., Banin, U., Willner, I. (2003). Lighting-up the dynamics of telomerization and DNA replication by CdSe–ZnS quantum dots. Journal of the American Chemical Society, 125, 13918–13919.  https://doi.org/10.1021/ja035848c
  63. Pelaz, B., et al. (2012). The state of nanoparticle-based nanoscience and biotechnology: Progress, promises, and challenges. ACS Nano, 6, 8468–8483.  https://doi.org/10.1021/nn303929a.CrossRefGoogle Scholar
  64. Peng, H., Zhang, L., Soeller, C., & Travas-Sejdic, J. (2007). Preparation of water-soluble CdTe/CdS core/shell quantum dots with enhanced photostability. Journal of Luminescence, 127, 721–726.  https://doi.org/10.1016/j.jlumin.2007.04.007.CrossRefGoogle Scholar
  65. Peng, J., Liu, S., Yan, S., Fan, X., & He, Y. (2010). A study on the interaction between CdTe quantum dots and chymotrypsin using optical spectroscopy. Colloids Surf, A 359, 13–17  https://doi.org/10.1016/j.colsurfa.2010.01.027.
  66. Peng, Z. A., & Peng, X. (2000). Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. Journal of the American Chemical Society, 123, 183–184.  https://doi.org/10.1021/ja003633m.CrossRefGoogle Scholar
  67. Pericleous, P., Gazouli, M., Lyberopoulou, A., Rizos, S., Nikiteas, N., & Efstathopoulos, E. P. (2012). Quantum dots hold promise for early cancer imaging and detection. International Journal of Cancer, 131, 519–528.  https://doi.org/10.1002/ijc.27528.CrossRefGoogle Scholar
  68. Reed, M. A. (1993). Quantum dots. Scientific American, 268, 118–123.CrossRefGoogle Scholar
  69. Reiss, P., Protière, M., & Li, L. (2009). Core/shell semiconductor nanocrystals. Small, 5, 154–168.  https://doi.org/10.1002/smll.200800841.CrossRefGoogle Scholar
  70. Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., & Nann, T. (2008). Quantum dots versus organic dyes as fluorescent labels. Nature Methods, 5, 763–775.  https://doi.org/10.1038/nmeth.1248.CrossRefGoogle Scholar
  71. Rizvi, S. B., Ghaderi, S., Keshtgar, M., & Seifalian, A. M. (2010). Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano Reviews, 1, 5161.  https://doi.org/10.3402/nano.v1i0.5161.CrossRefGoogle Scholar
  72. Rosen, A. B., et al. (2007). Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis. Stem Cells, 25, 2128–2138.CrossRefGoogle Scholar
  73. Samia, A. C. S., Chen, X., & Burda, C. (2003). Semiconductor quantum dots for photodynamic therapy. Journal of the American Chemical Society, 125, 15736–15737.  https://doi.org/10.1021/ja0386905.CrossRefGoogle Scholar
  74. Shen, Y., et al. (2017). Rational engineering of semiconductor QDs enabling remarkable 1O2 production for tumor-targeted photodynamic therapy. Biomaterials 148, 31–40.  https://doi.org/10.1016/j.biomaterials.2017.09.026
  75. Sheng, W., Kim, S., Lee, J., Kim, S.-W., Jensen, K., & Bawendi, M. G. (2006). In-situ encapsulation of quantum dots into polymer microspheres. Langmuir, 22, 3782–3790.  https://doi.org/10.1021/la051973l.CrossRefGoogle Scholar
  76. Shi, L., Rosenzweig, N., & Rosenzweig, Z. (2007). Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors. Analytical Chemistry, 79, 208–214.  https://doi.org/10.1021/ac0614644.CrossRefGoogle Scholar
  77. Silva, G. A. (2009). Chapter 2—Quantum dot nanotechnologies for neuroimaging. In Sharma, H. S. (Ed.), Progress in brain research (Vol. 180, pp. 19–34). Amsterdam: Elsevier.  https://doi.org/10.1016/s0079-6123(08)80002-7.
  78. Silva, G. A. (2012). Quantum dot methods for cellular neuroimaging. In Nanotechnology for biology and medicine (pp. 169–186). Berlin: Springer.  https://doi.org/10.1007/978-0-387-31296-5_8
  79. Smith, A. M., Gao, X., & Nie, S. (2004). Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochemistry and Photobiology, 80, 377–385.  https://doi.org/10.1111/j.1751-1097.2004.tb00102.x.CrossRefGoogle Scholar
  80. Stein, M.-P., Dong, J., & Wandinger-Ness, A. (2003). Rab proteins and endocytic trafficking: potential targets for therapeutic intervention. Advanced Drug Delivery Reviews, 55, 1421–1437.  https://doi.org/10.1016/j.addr.2003.07.009.CrossRefGoogle Scholar
  81. Talapin, D. V., Haubold, S., Rogach, A. L., Kornowski, A., Haase, M., & Weller, H. (2001). A novel organometallic synthesis of highly luminescent CdTe nanocrystals. The Journal of Physical Chemistry B, 105, 2260–2263.  https://doi.org/10.1021/jp003177o.CrossRefGoogle Scholar
  82. Tessler, N., Medvedev, V., Kazes, M., Kan, S., & Banin, U. (2002). Efficient near-infrared polymer nanocrystal light-emitting diodes. Science, 295, 1506–1508.  https://doi.org/10.1126/science.1068153.CrossRefGoogle Scholar
  83. Vaishnavi, E., Manibalan, K., Parameshwari, R., Jeganathan, K., & Renganathan, R. (2015). Interaction of digestive enzymes with tunable light emitting quantum dots: A thorough spectroscopic investigation. Luminescence, 30, 978–989.  https://doi.org/10.1002/bio.2847.CrossRefGoogle Scholar
  84. Vaishnavi, E., & Renganathan, R. (2013). CdTe quantum dot as a fluorescence probe for vitamin B12 in dosage form. Spectrochim Acta Part A, 115, 603–609.  https://doi.org/10.1016/j.saa.2013.06.068.CrossRefGoogle Scholar
  85. Vu, T. Q., Maddipati, R., Blute, T. A., Nehilla, B. J., Nusblat, L., & Desai, T. A. (2005). Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth. Nano Letters, 5, 603–607.  https://doi.org/10.1021/nl047977c.CrossRefGoogle Scholar
  86. Walling, M., Novak, J., & Shepard, J. R. E. (2009). Quantum dots for live cell and in vivo imaging. International Journal of Molecular Sciences, 10, 441.  https://doi.org/10.3390/ijms10020441.CrossRefGoogle Scholar
  87. Wang, B.-B., Wang, Q., Jin, Y.-G., Ma, M.-H., & Cai, Z.-X. (2015). Two-color quantum dots-based fluorescence resonance energy transfer for rapid and sensitive detection of Salmonella on eggshells. Journal of Photochemistry and Photobiology A, 299, 131–137.  https://doi.org/10.1016/j.jphotochem.2014.10.020.
  88. Wang, H.-Z., Wang, H-y., Liang, R-q., & Ruan, K.-C. (2004). Detection of tumor marker CA125 in ovarian carcinoma using quantum dots. Acta Biochimica et Biophysica Sinica, 36, 681–686.  https://doi.org/10.1093/abbs/36.10.681.
  89. Wang, Y., & Chen, L. (2011). Quantum dots, lighting up the research and development of nanomedicine. Nanomedicine, 7, 385–402.  https://doi.org/10.1016/j.nano.2010.12.006.
  90. Woodward, J., et al. (2011). LaPO4 nanoparticles doped with actinium-225 that partially sequester daughter radionuclides. Bioconjugate Chemistry, 22, 766–776.  https://doi.org/10.1021/bc100574f.
  91. Wu, F., Lewis, J. W., Kliger, D. S., & Zhang, J. Z. (2003). Unusual excitation intensity dependence of fluorescence of CdTe nanoparticles. The Journal of Chemical Physics, 118, 12–16.  https://doi.org/10.1063/1.1533733.CrossRefGoogle Scholar
  92. Wu, X., et al. (2002). Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology, 21, 41.  https://doi.org/10.1038/nbt764.
  93. Xu, G., Mahajan, S., Roy, I., & Yong, K.-T. (2013). Theranostic quantum dots for crossing blood–brain barrier in vitro and providing therapy of HIV-associated encephalopathy. Frontiers in Pharmacology, 4.  https://doi.org/10.3389/fphar.2013.00140.
  94. Yu, X.-Y., Lei, B.-X., Kuang, D.-B., & Su, C.-Y. (2011). Highly efficient CdTe/CdS quantum dot sensitized solar cells fabricated by a one-step linker assisted chemical bath deposition. Chemical Science, 2, 1396–1400.  https://doi.org/10.1039/c1sc00144b.CrossRefGoogle Scholar
  95. Zhang, Y., Chen, W., Zhang, J., Liu, J., Chen, G., & Pope, C. (2007). Vitro and in vivo toxicity of CdTe nanoparticles. Journal of Nanoscience and Nanotechnology, 7, 497–503.  https://doi.org/10.1166/jnn.2007.125.CrossRefGoogle Scholar
  96. Zrazhevskiy, P., Sena, M., & Gao, X. (2010). Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chemical Society Reviews, 39, 4326–4354.  https://doi.org/10.1039/b915139g.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of ChemistrySri GVG Visalakshi College for WomenUdumalpetIndia
  2. 2.School of ChemistryBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations