Advertisement

Lipid and Polymeric Nanoparticles: Drug Delivery Applications

  • Meriem RezigueEmail author
Chapter
  • 43 Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Recently, among the novel nanocarriers investigated for drug delivery lipid and polymeric nanoparticles have gained big interest due to their safety and potency. In the last decades, lipid nanoparticles presented by solid lipid nanoparticles SLNs and their newer generation known as nanostructured lipid carriers NLCs provided a promising alternative to traditional colloidal drug carriers. Furthermore, polymeric nanoparticles are innovative systems and used widely to incorporate active ingredients and replace conventional vehicles. Polymeric nanoparticles have been shown to be highly effective in drug delivery, imaging, therapy, and theranostic applications. This chapter will mainly focus to give information about the structure, the properties, the advantages, the constituents and the methods of preparation of lipid and polymeric nanoparticles and emphasize the application of these nanoparticles in drug delivery. Furthermore, it will cover recent studies dealing with the therapeutic applications of these two types of nanoparticles.

References

  1. Agrahari, V., & Mitra, A. K. (2016). Nanobubbles: A promising efficient tool for therapeutic delivery. Therapeutic Delivery, 7, 117–138.  https://doi.org/10.4155/tde.15.92.CrossRefGoogle Scholar
  2. Agrawal, Y., Petkar, K. C., & Sawant, K. K. (2010). Development, evaluation and clinical studies of Acitretin loaded nanostructured lipid carriers for topical treatment of psoriasis. International Journal of Pharmaceutics, 401, 93–102.  https://doi.org/10.1016/j.ijpharm.2010.09.007.CrossRefGoogle Scholar
  3. Ahmad, Z., Shah, A., Siddiq, M., & Kraatz, H. B. (2014). Polymeric micelles as drug delivery vehicles. RSC Advances, 4, 17028–17038.  https://doi.org/10.1039/c3ra47370h.CrossRefGoogle Scholar
  4. Ahmed, T. A., & El-say, K. M. (2014). Development of alginate-reinforced chitosan nanoparticles utilizing W/O nanoemulsification/internal crosslinking technique for transdermal delivery of rabeprazole. Life Sciences, 110, 35–43.  https://doi.org/10.1016/j.lfs.2014.06.019.CrossRefGoogle Scholar
  5. Alai, M. S., Lin, W. J., & Pingale, S. S. (2015). Application of polymeric nanoparticles and micelles in insulin oral delivery. Journal of Food and Drug Analysis, 23, 351–358.  https://doi.org/10.1016/j.jfda.2015.01.007.CrossRefGoogle Scholar
  6. Almeida, A. J., & Souto, E. (2007). Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Advanced Drug Delivery Reviews, 59, 478–490.  https://doi.org/10.1016/j.addr.2007.04.007.CrossRefGoogle Scholar
  7. Alvarez-trabado, J., Diebold, Y., & Sanchez, A. (2017). Designing lipid nanoparticles for topical ocular drug delivery. International Journal of Pharmaceutics, 532, 204–217.  https://doi.org/10.1016/j.ijpharm.2017.09.017.CrossRefGoogle Scholar
  8. Anton, N., Benoit, J., & Saulnier, P. (2008). Design and production of nanoparticles formulated from nano-emulsion templates—A review. Journal of Controlled Release, 128, 185–199.  https://doi.org/10.1016/j.jconrel.2008.02.007.CrossRefGoogle Scholar
  9. Averina, E. S., Müller, R. H., Popov, D. V., & Radnaeva, L. D. (2011). Physical and chemical stability of nanostructured lipid drug carriers (NLC) based on natural lipids from Baikal region (Siberia, Russia). Pharmazie, 66, 348–356.  https://doi.org/10.1691/ph.2011.0326.CrossRefGoogle Scholar
  10. Averina, E. S., Seewald, G., Müller, R. H., Radnaeva, L. D., & Popov, D. V. (2010). Nanostructured lipid carriers (NLC) on the basis of Siberian pine (Pinus sibirica) seed oil. Pharmazie, 65, 25–31.  https://doi.org/10.1691/ph.2010.9203.CrossRefGoogle Scholar
  11. Awat, M. R., Ingh, D. S., Araf, S. S., & Araf, S. S. (2006). Nanocarriers: Promising vehicle for bioactive drugs. Biological and Pharmaceutical Bulletin, 29, 1790–1798.CrossRefGoogle Scholar
  12. Badri, W., Miladi, K., Robin, S., Viennet, C., Nazari, Q. A., Agusti, G., et al. (2017). Polycaprolactone based nanoparticles loaded with indomethacin for anti-inflammatory therapy: From preparation to ex vivo study. Pharmaceutical Research, 34, 1773–1783.  https://doi.org/10.1007/s11095-017-2166-7.CrossRefGoogle Scholar
  13. Banik, B. L., Fattahi, P., & Brown, J. L. (2016). Polymeric nanoparticles: The future of nanomedicine. WIREs Nanomedicine and Nanobiotechnology, 8, 271–299.  https://doi.org/10.1002/wnan.1364.CrossRefGoogle Scholar
  14. Bargoni, A., Cavalli, R., Zara, G. P., Fundarò, A., Caputo, O., & Gasco, M. R. (2001). Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (SLN) after duodenal administration to rats. Part II—Tissue distribution. Pharmacological Research, 43:497–502.  https://doi.org/10.1006/phrs.2001.0813.
  15. Bennet, D., & Kim, S. (2014). Polymer nanoparticles for smart drug delivery. In Application of nanotechnology in drug delivery (pp. 257–310).Google Scholar
  16. Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J., Corrie, S. R., & Corrie, S. R. (2016). Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharmaceutical Research, 33, 2373–2387.  https://doi.org/10.1007/s11095-016-1958-5.CrossRefGoogle Scholar
  17. Bunjes, H., Westesen, K., & Koch, M. H. J. (1996). Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. International Journal of Pharmaceutics, 129, 159–173.  https://doi.org/10.1016/0010-2180(81)90166-8.CrossRefGoogle Scholar
  18. Burman, A. C., Mukherjee, R., Khattar, D., Mullick, S., Jaggi, M., Singh, M. K., et al. (2009) A biocompatible, non-biodegradable, non-toxic polymer useful for nanoparticle pharmaceutical compositions. US 2009/0318661 A1.Google Scholar
  19. Carbone, C., Tomasello, B., Ruozi, B., Renis, M., & Puglisi, G. (2012). Preparation and optimization of PIT solid lipid nanoparticles via statistical factorial design. European Journal of Medicinal Chemistry, 49, 110–117.  https://doi.org/10.1016/j.ejmech.2012.01.001.CrossRefGoogle Scholar
  20. Cavallaro, G., Sardo, C., Craparo, E. F., Porsio, B., & Giammona, G. (2017). Polymeric nanoparticles for siRNA delivery: Production and applications. International Journal of Pharmaceutics, 525, 313–333.  https://doi.org/10.1016/j.ijpharm.2017.04.008.CrossRefGoogle Scholar
  21. Charcosset, C., El-Harati, A., & Fessi, H. (2005). Preparation of solid lipid nanoparticles using a membrane contactor. Journal of Controlled Release, 108, 112–120.  https://doi.org/10.1016/j.jconrel.2005.07.023.CrossRefGoogle Scholar
  22. Chaurasia, S., Chaubey, P., Patel, R. R., Kumar, N., & Mishra, B. (2016). Curcumin-polymeric nanoparticles against colon-26 tumor-bearing mice: Cytotoxicity, pharmacokinetic and anticancer efficacy studies. Drug Development and Industrial Pharmacy, 42, 694–700.  https://doi.org/10.3109/03639045.2015.1064941.CrossRefGoogle Scholar
  23. Chen, D. B., Yang, T. Z., Lu, W. L., & Zhang, Q. (2002). In vitro and in vivo study of two kinds of long-circulating solid lipid nanoparticles containing paclitaxel. Chemical and Pharmaceutical Bulletin, 37, 54–58.  https://doi.org/10.1248/cpb.49.1444.CrossRefGoogle Scholar
  24. Chen, M. C., Sonaje, K., Chen, K. J., & Sung, H. W. (2011). A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials, 32, 9826–9838.  https://doi.org/10.1016/j.biomaterials.2011.08.087.CrossRefGoogle Scholar
  25. Cheng, M., Huang, Y., Zhou, H., Liu, Z., & Li, J. (2010). Rapid preparation and characterization of chitosan nanoparticles for oligonucleotide. Current Applied Physics, 10, 797–800.  https://doi.org/10.1016/j.cap.2009.09.017.CrossRefGoogle Scholar
  26. Cheng, R., Meng, F., Deng, C., Klok, H. A., & Zhong, Z. (2013). Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials, 34, 3647–3657.  https://doi.org/10.1016/j.biomaterials.2013.01.084.CrossRefGoogle Scholar
  27. Cho, H., Lai, T. C., Tomoda, K., & Kwon, G. S. (2014). Polymeric micelles for multi-drug delivery in cancer. An Official Journal of the American Association of Pharmaceutical Scientists, 16, 10–20.  https://doi.org/10.1208/s12249-014-0251-3.CrossRefGoogle Scholar
  28. Constantinides, P. P., Tustian, A., & Kessler, D. R. (2004). Tocol emulsions for drug solubilization and parenteral delivery. Advanced Drug Delivery Reviews, 56, 1243–1255.  https://doi.org/10.1016/j.addr.2003.12.005.CrossRefGoogle Scholar
  29. Couvreur, P., & Vauthier, C. (2006). Nanotechnology: Intelligent design to treat complex disease. Pharmaceutical Research, 23, 1417–1450.  https://doi.org/10.1007/s11095-006-0284-8.CrossRefGoogle Scholar
  30. Dalpiaz, A., Vighi, E., Pavan, B., & Leo, E. (2009). Fabrication via a nonaqueous nanoprecipitation method, characterization and in vitro biological behavior of N6-cyclopentyladenosine-loaded nanoparticles. Journal of Pharmaceutical Sciences, 98, 4272–4284.  https://doi.org/10.1002/jps.21710.CrossRefGoogle Scholar
  31. Dash, T. K., & Konkimalla, V. B. (2012). Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. Journal of Controlled Release, 158, 15–33.  https://doi.org/10.1016/j.jconrel.2011.09.064.CrossRefGoogle Scholar
  32. Date, A. A., Joshi, M. D., & Patravale, V. B. (2007). Parasitic diseases: Liposomes and polymeric nanoparticles versus lipid nanoparticles ☆. Advanced Drug Delivery Reviews, 59, 505–521.  https://doi.org/10.1016/j.addr.2007.04.009.CrossRefGoogle Scholar
  33. De Campos, A. M., Sa, A., & Alonso, J. (2001). Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. International Journal of Pharmaceutics, 224, 159–168.CrossRefGoogle Scholar
  34. De Jesus, M. B., & Zuhorn, I. S. (2015). Solid lipid nanoparticles as nucleic acid delivery system: Properties and molecular mechanisms. Journal of Controlled Release, 201, 1–13.  https://doi.org/10.1016/j.jconrel.2015.01.010.CrossRefGoogle Scholar
  35. Dingler, A., Blum, R. P., Niehus, H., Müller, R. H., & Gohla, S. (1999). Solid lipid nanoparticles (SLN(TM)/Lipopearls(TM))—A pharmaceutical and cosmetic carrier for the application of vitamin E in dermal products. Journal of Microencapsulation, 16, 751–767.  https://doi.org/10.1080/026520499288690.CrossRefGoogle Scholar
  36. Dubes, A., Parrot-Lopez, H., Abdelwahed, W., Degobert, G., Fessi, H., Shahgaldian, P., et al. (2003). Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins. European Journal of Pharmaceutics and Biopharmaceutics, 55, 279–282.  https://doi.org/10.1016/S0939-6411(03)00020-1.CrossRefGoogle Scholar
  37. Duxfield, L., Sultana, R., Wang, R., Deo, V. E. S., Swift, S., Rupenthal, I., et al. (2016). Development of gatifloxacin-loaded cationic polymeric nanoparticles for ocular drug delivery. Pharmaceutical Development and Technology, 21, 172–192.CrossRefGoogle Scholar
  38. El-say, K. M., & El-sawy, H. S. (2017). Polymeric nanoparticles: Promising platform for drug delivery. International Journal of Pharmaceutics, 528, 675–691.  https://doi.org/10.1016/j.ijpharm.2017.06.052.CrossRefGoogle Scholar
  39. Englert, C., Brendel, J. C., Majdanski, T. C., Yildirim, T., Schubert, S., Gottschaldt, M., et al. (2018). Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Progress in Polymer Science, 87, 107–164.  https://doi.org/10.1016/j.progpolymsci.2018.07.005.CrossRefGoogle Scholar
  40. Esposito, E., Mariani, P., Ravani, L., Contado, C., Volta, M., Bido, S., et al. (2012). Nanoparticulate lipid dispersions for bromocriptine delivery: Characterization and in vivo study. European Journal of Pharmaceutics and Biopharmaceutics, 80, 306–314.  https://doi.org/10.1016/j.ejpb.2011.10.015.CrossRefGoogle Scholar
  41. Fang, C.-L., Al-Suwayeh, S. A., & Fang, J.-Y. (2013). Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Patents on Nanotechnology, 7, 41–55.  https://doi.org/10.2174/187221013804484827.CrossRefGoogle Scholar
  42. Ferreira, D., Reis, S., & Sarmento, B. (2013). Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. International Journal of Pharmaceutics, 456, 370–381.  https://doi.org/10.1016/j.ijpharm.2013.08.076.CrossRefGoogle Scholar
  43. Fessi, H., Puisieux, F., Devissaguet, J. P., Ammoury, N., & Benita, S. (1989). Nanocapsule formation by interfacial polymer deposition following solvent displacement. International Journal of Pharmaceutics, 55, 1–4.CrossRefGoogle Scholar
  44. Freitas, C., & Müller, R. H. (1999). Correlation between long-term stability of solid lipid nanoparticles (SLN?) and crystallinity of the lipid phase. European Journal of Pharmaceutics and Biopharmaceutics, 47, 125–132.CrossRefGoogle Scholar
  45. Galindo-rodriguez, S., Alle, E., Fessi, H., & Doelker, E. (2004). Associated with nanoparticle formation in the salting-out, nanoprecipitation methods. Pharmaceutical Research, 21, 1428–1439.CrossRefGoogle Scholar
  46. Gallarate, M., Trotta, M., Battaglia, L., & Chirio, D. (2009). Preparation of solid lipid nanoparticles from W/O/W emulsions: Preliminary studies on insulin encapsulation. Journal of Microencapsulation, 26, 394–402.  https://doi.org/10.1080/02652040802390156.CrossRefGoogle Scholar
  47. Gallas, A., Alexander, C., Davies, M. C., & Allen, S. (2013). Chemistry and formulations for siRNA therapeutics. Chemical Society Reviews, 42, 7983.  https://doi.org/10.1039/c3cs35520a.CrossRefGoogle Scholar
  48. Ganesan, P., & Narayanasamy, D. (2017). Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustainable Chemistry and Pharmacy, 6, 37–56.  https://doi.org/10.1016/j.scp.2017.07.002.CrossRefGoogle Scholar
  49. Gao, S., & McClements, D. J. (2016). Formation and stability of solid lipid nanoparticles fabricated using phase inversion temperature method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 499, 79–87.  https://doi.org/10.1016/j.colsurfa.2016.03.065.CrossRefGoogle Scholar
  50. García-Fuentes, M., Torres, D., & Alonso, M. J. (2003). Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloids and Surfaces B: Biointerfaces, 27(3), 159–168.  https://doi.org/10.1016/s0927-7765(02)00053-x.CrossRefGoogle Scholar
  51. Gasco, M. R. (1993). US 5250236.Google Scholar
  52. Gasco, M. R. (2007). Lipid nanoparticles: Perspectives and challenges ☆. Advanced Drug Delivery Reviews, 59, 377–378.  https://doi.org/10.1016/j.addr.2007.05.004.CrossRefGoogle Scholar
  53. Gastaldi, L., Battaglia, L., Peira, E., Chirio, D., Muntoni, E., Solazzi, I., et al. (2014). Solid lipid nanoparticles as vehicles of drugs to the brain: Current state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 87, 433–444.  https://doi.org/10.1016/j.ejpb.2014.05.004.CrossRefGoogle Scholar
  54. Göppert, T. M., & Müller, R. H. (2005). Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). European Journal of Pharmaceutics and Biopharmaceutics, 60, 361–372.  https://doi.org/10.1016/j.ejpb.2005.02.006.CrossRefGoogle Scholar
  55. Goyal, R., Macri, L. K., Kaplan, H. M., & Kohn, J. (2016). Nanoparticles and nanofibers for topical drug delivery. Journal of Controlled Release, 240, 77–92.  https://doi.org/10.1016/j.jconrel.2015.10.049.CrossRefGoogle Scholar
  56. Greenhalgh, K., & Turos, E. (2009). In vivo studies of polyacrylate nanoparticle emulsions for topical and systemic applications. Nanomedicine: Nanotechnology, Biology and Medicine, 5, 46–54.  https://doi.org/10.1016/j.nano.2008.07.004.CrossRefGoogle Scholar
  57. Gu, X., Zhang, W., Liu, J., Shaw, J. P., Shen, Y., Xu, Y., et al. (2011). Preparation and characterization of a lovastatin-loaded protein-free nanostructured lipid carrier resembling high-density lipoprotein and evaluation of its targeting to foam cells. An Official Journal of the American Association of Pharmaceutical Scientists, 12, 1200–1208.  https://doi.org/10.1208/s12249-011-9668-0.CrossRefGoogle Scholar
  58. Güngör, S., Kahraman, E., & Ozsoy, Y. (2015). Nano based drug delivery. Zagreb, Croatia: IAPC Publishing.Google Scholar
  59. Güngör, S., & Rezigue, M. (2017). Nanocarriers mediated topical drug delivery for psoriasis treatment. Current Drug Metabolism, 18, 454–468.  https://doi.org/10.2174/1389200218666170222145240.CrossRefGoogle Scholar
  60. Gupta, S., & Moulik, S. P. (2008). Biocompatible microemulsions and their prospective uses in drug delivery. Journal of Pharmaceutical Sciences, 97, 22–45.  https://doi.org/10.1002/jps.21177.CrossRefGoogle Scholar
  61. Han, L., Tang, C., & Yin, C. (2014). Oral delivery of shRNA and siRNA via multifunctional polymeric nanoparticles for synergistic cancer therapy. Biomaterials, 35, 4589–4600.  https://doi.org/10.1016/j.biomaterials.2014.02.027.CrossRefGoogle Scholar
  62. Hao, J., Fang, X., Zhou, Y., Wang, J., Guo, F., Li, F., et al. (2011). Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. International Journal of Nanomedicine, 6, 683–692.  https://doi.org/10.2147/IJN.S17386.CrossRefGoogle Scholar
  63. Hee, Y., Kim, E., Eui, D., Shim, G., Lee, S., Bong, Y., et al. (2012). Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. European Journal of Pharmaceutics and Biopharmaceutics, 80, 268–273.  https://doi.org/10.1016/j.ejpb.2011.11.002.CrossRefGoogle Scholar
  64. Helgason, T., Awad, T. S., Kristbergsson, K., McClements, D. J., & Weiss, J. (2009). Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). Journal of Colloid and Interface Science, 334, 75–81.  https://doi.org/10.1016/j.jcis.2009.03.012.CrossRefGoogle Scholar
  65. Howard, K. A. (2009). Delivery of RNA interference therapeutics using polycation-based nanoparticles ☆. Advanced Drug Delivery Reviews, 61, 710–720.  https://doi.org/10.1016/j.addr.2009.04.001.CrossRefGoogle Scholar
  66. Hrkach, J., Von Hoff, D., Ali, M. M., Andrianova, E., Auer, J., Campbell, T., et al. (2012). Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Science Translational Medicine, 4, 128–139.  https://doi.org/10.1126/scitranslmed.3003651.CrossRefGoogle Scholar
  67. Huang, Z. R., Hua, S. C., Yang, Y. L., & Fang, J. Y. (2008). Development and evaluation of lipid nanoparticles for camptothecin delivery: A comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion. Acta Pharmacologica Sinica, 29, 1094–1102.  https://doi.org/10.1111/j.1745-7254.2008.00829.x.CrossRefGoogle Scholar
  68. Jain, D., & Bar-Shalom, D. (2014). Alginate drug delivery systems: Application in context of pharmaceutical and biomedical research. Drug Development and Industrial Pharmacy, 40, 1576–1584.  https://doi.org/10.3109/03639045.2014.917657.CrossRefGoogle Scholar
  69. Jenning, V., & Gohla, S. (2000). Comparison of wax and glyceride solid lipid nanoparticles (SLN®). International Journal of Pharmaceutics, 196, 219–222.  https://doi.org/10.1016/S0378-5173(99)00426-3.CrossRefGoogle Scholar
  70. Jenning, V., & Gohla, S. H. (2001). Encapsulation of retinoids in solid lipid nanoparticles (SLN 1). Journal of Microencapsulation, 18, 149–158.  https://doi.org/10.1080/02652040010000361.CrossRefGoogle Scholar
  71. Jenning, V., Schäfer-Korting, M., & Gohla, S. (2000a). Vitamin A-loaded solid lipid nanoparticles for topical use: Drug release properties. Journal of Controlled Release, 66, 115–126.  https://doi.org/10.1016/S0168-3659(99)00223-0.CrossRefGoogle Scholar
  72. Jenning, V., Thünemann, A. F., & Gohla, S. H. (2000b). Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. International Journal of Pharmaceutics, 199, 167–177.  https://doi.org/10.1016/S0378-5173(00)00378-1.CrossRefGoogle Scholar
  73. Jores, K., Haberland, A., Wartewig, S., Mäder, K., & Mehnert, W. (2005). Solid Lipid Nanoparticles (SLN) and oil-loaded SLN studied by spectrofluorometry and Raman spectroscopy. Pharmaceutical Research, 22, 1887–1897.  https://doi.org/10.1007/s11095-005-7148-5.CrossRefGoogle Scholar
  74. Joshi, M. D., & Müller, R. H. (2009). Lipid nanoparticles for parenteral delivery of actives. European Journal of Pharmaceutics and Biopharmaceutics, 71, 161–172.  https://doi.org/10.1016/j.ejpb.2008.09.003.CrossRefGoogle Scholar
  75. Kalam, M. A., Sultana, Y., Ali, A., Aqil, M., Mishra, A. K., & Chuttani, K. (2010). Preparation, characterization, and evaluation of gatifloxacin loaded solid lipid nanoparticles as colloidal ocular drug delivery system. Journal of Drug Targeting, 18, 191–204.  https://doi.org/10.3109/10611860903338462.CrossRefGoogle Scholar
  76. Kang, H. C., Huh, K. M., & Bae, Y. H. (2012). Polymeric nucleic acid carriers: Current issues and novel design approaches. Journal of Controlled Release, 164, 256–264.  https://doi.org/10.1016/j.jconrel.2012.06.036.CrossRefGoogle Scholar
  77. Kapoor, D. N., Kaur, R., Sharma, R., & Dhawan, S. (2015). PLGA: A unique polymer for drug delivery. Therapeutic Delivery, 6, 41–58.CrossRefGoogle Scholar
  78. Karimi, M., Bahrami, S., Ravari, S. B., Zangabad, P. S., Mirshekari, H., Bozorgomid, M., et al. (2016). Albumin nanostructures as advanced drug delivery systems. Expert Opinion on Drug Delivery, 13, 1609–1623.  https://doi.org/10.1080/17425247.2016.1193149.Albumin.CrossRefGoogle Scholar
  79. Karode, S. K., Kulkarni, R. S. S., Suresh, A. K. S., & Mashelkar, R. A. (1998). New insights into kinetics and thermodynamics of interfacial polymerization. Chemical Engineering Science, 53, 2649–2663.CrossRefGoogle Scholar
  80. Kaul, G., & Amji, M. (2004). biodistribution and targeting potential of poly (ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model goldie. Journal of Drug Targeting, 12, 585–591.CrossRefGoogle Scholar
  81. Kilfoyle, B. E., Sheihet, L., Zhang, Z., Laohoo, M., Kohn, J., & Michniak-Kohn, B. B. M. (2012a). NIH public access. Journal of Controlled Release, 163, 18–24.  https://doi.org/10.1016/j.neuroimage.2013.08.045.The.CrossRefGoogle Scholar
  82. Kilfoyle, B. E., Sheihet, L., Zhang, Z., Laohoo, M., Kohn, J., & Michniak-kohn, B. B. (2012b). Development of paclitaxel-TyroSpheres for topical skin treatment. Journal of Controlled Release, 163, 18–24.  https://doi.org/10.1016/j.jconrel.2012.06.021.CrossRefGoogle Scholar
  83. Kim, D., Jeong, Y., Choi, C., Roh, S., Kang, S., Jang, M., et al. (2006). Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. International Journal of Pharmaceutics, 319, 130–138.  https://doi.org/10.1016/j.ijpharm.2006.03.040.CrossRefGoogle Scholar
  84. Kim, K., Kim, J. H., Park, H., Kim, Y. S., Park, K., Nam, H., et al. (2010). Tumor-homing multifunctional nanoparticles for cancer theragnosis: Simultaneous diagnosis, drug delivery, and therapeutic monitoring. Journal of Controlled Release, 146, 219–227.  https://doi.org/10.1016/j.jconrel.2010.04.004.CrossRefGoogle Scholar
  85. Kim, S. T., Jang, D. J., Kim, J. H., Park, J. Y., Lim, J. S., Lee, S. Y., et al. (2009). Topical administration of cyclosporin A in a solid lipid nanoparticle formulation. Pharmazie, 64, 510–514.  https://doi.org/10.1691/ph.2009.8373.CrossRefGoogle Scholar
  86. Kreuter, J. (2014). Drug delivery to the central nervous system by polymeric nanoparticles: What do we know? Advanced Drug Delivery Reviews, 71, 2–14.  https://doi.org/10.1016/j.addr.2013.08.008.CrossRefGoogle Scholar
  87. Kumar, M., Kakkar, V., Mishra, A. K., Chuttani, K., & Kaur, I. P. (2014). Intranasal delivery of streptomycin sulfate (STRS) loaded solid lipid nanoparticles to brain and blood. International Journal of Pharmaceutics, 461, 223–233.  https://doi.org/10.1016/j.ijpharm.2013.11.038.CrossRefGoogle Scholar
  88. Kumar, S., & Randhawa, J. K. (2013). High melting lipid based approach for drug delivery: Solid lipid nanoparticles. Materials Science and Engineering C, 33, 1842–1852.  https://doi.org/10.1016/j.msec.2013.01.037.CrossRefGoogle Scholar
  89. Kwon, B., Kang, C., Kim, J., Yoo, D., Cho, B. R., Kang, P. M., et al. (2016). H2O2-responsive antioxidant polymeric nanoparticles as therapeutic agents for peripheral arterial disease. International Journal of Pharmaceutics, 511, 1022–1032.  https://doi.org/10.1016/j.ijpharm.2016.08.014.CrossRefGoogle Scholar
  90. Lai, P., Daear, W., Löbenberg, R., & Prenner, E. J. (2014). Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine, chitosan, poly ( d, l -lactide-co-glycolic acid) and polyalkylcyanoacrylate. Colloids and Surfaces B: Biointerfaces, 118, 154–163.  https://doi.org/10.1016/j.colsurfb.2014.03.017.CrossRefGoogle Scholar
  91. Lallemand, F., Daull, P., Benita, S., Buggage, R., & Garrigue, J. (2012). Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. Journal of Drug Delivery, 1–16. https://doi.org/10.1155/2012/604204
  92. Lambert, G., Fattal, E., Pinto-alphandary, H., Gulik, A., & Couvreur, P. (2000). Pharmaceutical Research Paper, 17(6), 707–714.Google Scholar
  93. Lander, R., Manger, W., Scouloudis, M., Ku, A., Davis, C., & Lee, A. (2000). Gaulin homogenization: A mechanistic study. Biotechnology Progress, 16, 80–85.  https://doi.org/10.1021/bp990135c.CrossRefGoogle Scholar
  94. Lapteva, M., Mondon, K., Moller, M., Gurny, R., & Kalia, Y. N. (2014). Polymeric micelle nanocarriers for the cutaneous delivery of tacrolimus: A targeted approach for the treatment of psoriasis. Molecular Pharmaceutics, 11, 2989–3001.CrossRefGoogle Scholar
  95. Leonardi, A., Crascí, L., Panico, A., & Pignatello, R. (2015). Antioxidant activity of idebenone-loaded neutral and cationic solid-lipid nanoparticles. Pharmaceutical Development and Technology, 20, 716–723.  https://doi.org/10.3109/10837450.2014.915572.CrossRefGoogle Scholar
  96. Lippacher, A., Müller, R. H., & Mäder, K. (2000). Investigation on the viscoelastic properties of lipid based colloidal drug carriers. International Journal of Pharmaceutics, 196, 227–230.  https://doi.org/10.1016/S0378-5173(99)00428-7.CrossRefGoogle Scholar
  97. Liu, P., Yue, C., Shi, B., Gao, G., Li, M., Wang, B., et al. (2013). Dextran based sensitive theranostic nanoparticles for near-infrared imaging and photothermal therapy in vitro. Chemical Communications, 49, 6143–6145.  https://doi.org/10.1039/c3cc43633k.CrossRefGoogle Scholar
  98. Lobovkina, T., Jacobson, G. B., Gonzalez-gonzalez, E., Hickerson, R. P., Leake, D., Kaspar, R. L., et al. (2011). In vivo sustained release of siRNA from solid lipid nanoparticles. ACS Nano, 5, 9977–9983.CrossRefGoogle Scholar
  99. Lockman, P. R., Mumper, R. J., Khan, M. A., Allen, D. D., Mumper, R. J., Khan, M. A., et al. (2002). Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Development and Industrial Pharmacy, 28, 1–13.  https://doi.org/10.1081/DDC-120001481.CrossRefGoogle Scholar
  100. Małgorzata, G.-M., & Moritz, M. (2016). Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. Materials Science and Engineering C, 68, 982–994.  https://doi.org/10.1016/j.msec.2016.05.119.CrossRefGoogle Scholar
  101. Manconi, M., Sinico, C., Caddeo, C., Ofelia, A., Valenti, D., & Maria, A. (2011). Penetration enhancer containing vesicles as carriers for dermal delivery of tretinoin. International Journal of Pharmaceutics, 412, 37–46.  https://doi.org/10.1016/j.ijpharm.2011.03.068.CrossRefGoogle Scholar
  102. Mao, S. R., Wang, Y. Z., Ji, H. Y., & Bi, D. Z. (2003). Preparation of solid lipid nanoparticles by microemulsion technique. International Journal of Pharmaceutics, 257, 153–160.  https://doi.org/10.1016/S0378-5173(03)00135-2.CrossRefGoogle Scholar
  103. Marcato, P. D., & Durán, N. (2008). New aspects of nanopharmaceutical delivery systems. Journal of Nanoscience and Nanotechnology, 8, 1–14.  https://doi.org/10.1166/jnn.2008.274.CrossRefGoogle Scholar
  104. Marengo, E., Cavalli, R., Caputo, O., Rodriguez, L., & Gasco, M. R. (2000). Scale-up of the preparation process of solid lipid nanospheres. Part I. International Journal of Pharmaceutics, 205, 3–13.  https://doi.org/10.1016/S0378-5173(00)00471-3.CrossRefGoogle Scholar
  105. Martins, S., Sarmento, B., & Souto, E. B. (2007). Lipid-based colloidal carriers for peptide and protein delivery–liposomes versus lipid nanoparticles. International Journal of Nanomedicine, 2, 595–608.Google Scholar
  106. Matos, B. N., Reis, T. A., Gratieri, T., & Gelfuso, G. M. (2015). Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles. International Journal of Biological Macromolecules, 75, 225–229.  https://doi.org/10.1016/j.ijbiomac.2015.01.036.CrossRefGoogle Scholar
  107. Mehnert, W., & Mader, K. (2001). Solid lipid nanoparticles: Production, characterization and applications. Advanced Drug Delivery Reviews, 47, 165–196.CrossRefGoogle Scholar
  108. Meyer, R. A., & Green, J. J. (2016). Shaping the future of nanomedicine: Anisotropy in polymeric nanoparticle design. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 8, 191–207.  https://doi.org/10.1002/wnan.1348.CrossRefGoogle Scholar
  109. Mishra, B., Patel, B. B., & Tiwari, S. (2010). Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 6, 9–24.  https://doi.org/10.1016/j.nano.2009.04.008.CrossRefGoogle Scholar
  110. Mo, R., Jiang, T., Di, J., Tai, W., & Gu, Z. (2014). Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chemical Society Reviews, 43, 3595–3629.  https://doi.org/10.1039/c3cs60436e.CrossRefGoogle Scholar
  111. Müller, R., Runge, S., Ravelli, V., Mehnert, W., Th, A. F., & Souto, E. B. (2006). Oral bioavailability of cyclosporine: Solid lipid nanoparticles (SLN®) versus drug nanocrystals. International Journal of Pharmaceutics, 317, 82–89.  https://doi.org/10.1016/j.ijpharm.2006.02.045.CrossRefGoogle Scholar
  112. Müller, R. H. (2007). Lipid nanoparticles: Recent advances. Advanced Drug Delivery Reviews, 59, 375–376.  https://doi.org/10.1016/j.addr.2007.05.002.CrossRefGoogle Scholar
  113. Müller, R. H., Mader, K., & Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery—A review of the state of the art. European Journal of Pharmaceutical Sciences, 50, 161–177.Google Scholar
  114. Müller, R. H., Petersen, R. D., Hommoss, A., & Pardeike, J. (2007). Nanostructured lipid carriers (NLC) in cosmetic dermal products ☆. Advanced Drug Delivery Reviews, 59, 522–530.  https://doi.org/10.1016/j.addr.2007.04.012.CrossRefGoogle Scholar
  115. Müller, R. H., Radtke, M., & Wissing, S. A. (2002a). Nanostructured lipid matrices for improved microencapsulation of drugs. International Journal of Pharmaceutics, 242, 121–128.CrossRefGoogle Scholar
  116. Müller, R. H., Radtke, M., & Wissing, S. A. (2002b). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Advanced Drug Delivery Reviews, 54, 131–155.  https://doi.org/10.1016/S0169-409X(02)00118-7.CrossRefGoogle Scholar
  117. Muller, R. H., Shegokar, R., & Keck, C. M. (2011). 20 years of lipid nanoparticles (SLN and NLC): Present state of development and industrial applications. Current Drug Discovery Technologies, 8, 207–227.  https://doi.org/10.2174/157016311796799062.CrossRefGoogle Scholar
  118. Nagavarma, B. V. N., Yadav, H. K. S., Ayaz, A., Vasudha, L. S., & Shivakumar, H. G. (2012). Different techniques for preparation of polymeric nanoparticles—A review. Asian Journal of Pharmaceutical and Clinical Research, 5, 16–23.Google Scholar
  119. Olbrich, C., Bakowsky, U., Lehr, C., Muller, R. H., & Kneuer, C. (2001). Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA. Journal of Controlled Release, 77, 345–355.CrossRefGoogle Scholar
  120. Panyam, J., & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 55, 329–347.  https://doi.org/10.1016/S0169-409X(02)00228-4.CrossRefGoogle Scholar
  121. Pardeike, J., Hommoss, A., & Müller, R. H. (2009). Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. International Journal of Pharmaceutics, 355, 170–184.  https://doi.org/10.1016/j.ijpharm.2008.10.003.CrossRefGoogle Scholar
  122. Pardeike, J., Weber, S., Haber, T., Wagner, J., Zarfl, H. P., Plank, H., et al. (2011). Pharmaceutical Nanotechnology Development of an Itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. International Journal of Pharmaceutics, 419, 329–338.  https://doi.org/10.1016/j.ijpharm.2011.07.040.CrossRefGoogle Scholar
  123. Patel, D., Dasgupta, S., Dey, S., Roja Ramani, Y., Ray, S., & Mazumder, B. (2012). Nanostructured lipid carriers (NLC)-based gel for the topical delivery of aceclofenac: Preparation, characterization, and in vivo evaluation. Scientia Pharmaceutica, 80, 749–764.  https://doi.org/10.3797/scipharm.1202-12.CrossRefGoogle Scholar
  124. Patel, M. R., & San Martin-Gonzalez, M. F. (2012). Characterization of ergocalciferol loaded solid lipid nanoparticles. Journal of Food Science, 77, 8–13.  https://doi.org/10.1111/j.1750-3841.2011.02517.x.CrossRefGoogle Scholar
  125. Peter, A. J., & Kim, C. S. (2000). Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhalation Toxicology, 12, 715–731.  https://doi.org/10.1080/08958370050085156.CrossRefGoogle Scholar
  126. Poonia, N., Kharb, R., Lather, V., & Pandita, D. (2016). Nanostructured lipid carriers: Versatile oral delivery vehicle. Futur Science OA, 2, FSO135.  https://doi.org/10.4155/fsoa-2016-0030.CrossRefGoogle Scholar
  127. Poovi, G., & Damodharan, N. (2018). Lipid nanoparticles: A challenging approach for oral delivery of BCS Class-II drugs. Future Journal of Pharmaceutical Sciences, 1–15.  https://doi.org/10.1016/j.fjps.2018.04.001.
  128. Pozo-rodr, A., Delgado, D., Solin, M. A., & Pedraz, J. L. (2007). Solid lipid nanoparticles: Formulation factors affecting cell transfection capacity. International Journal of Pharmaceutics, 339, 261–268.  https://doi.org/10.1016/j.ijpharm.2007.03.015.CrossRefGoogle Scholar
  129. Pozo-rodríguez, A., Solinís, M. A., Gascón, A. R., & Pedraz, J. L. (2009). Short- and long-term stability study of lyophilized solid lipid nanoparticles for gene therapy. European Journal of Pharmaceutics and Biopharmaceutics, 71, 181–189.  https://doi.org/10.1016/j.ejpb.2008.09.015.CrossRefGoogle Scholar
  130. Pozo-rodríguez, A., Solinís, M. Á., & Rodríguez-gascón, A. (2016). Applications of lipid nanoparticles in gene therapy. European Journal of Pharmaceutics and Biopharmaceutics, 109, 184–193.  https://doi.org/10.1016/j.ejpb.2016.10.016.CrossRefGoogle Scholar
  131. Pradhan, M., Singh, D., Murthy, S. N., & Singh, M. R. (2015a). Design, characterization and skin permeating potential of Fluocinolone acetonide loaded nanostructured lipid carriers for topical treatment of psoriasis. Steroids, 101, 56–63.  https://doi.org/10.1016/j.steroids.2015.05.012.CrossRefGoogle Scholar
  132. Pradhan, M., Singh, D., & Singh, M. R. (2015b). Development characterization and skin permeating potential of lipid based novel delivery system for topical treatment of psoriasis. Chemistry and Physics of Lipids, 186, 9–16.  https://doi.org/10.1016/j.chemphyslip.2014.11.004.CrossRefGoogle Scholar
  133. Puglia, C., & Bonina, F. (2012). Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals. Expert Opinion on Drug Delivery, 9, 429–441.  https://doi.org/10.1517/17425247.2012.666967.CrossRefGoogle Scholar
  134. Puglia, C., Offerta, A., Carbone, C., Bonina, F., Pignatello, R., & Puglisi, G. (2015). Lipid nanocarriers (LNC) and their applications in ocular drug delivery. Current Medicinal Chemistry, 22, 1589–1602.  https://doi.org/10.2174/0929867322666150209152259.CrossRefGoogle Scholar
  135. Qiu, J., Charleux, B., & Matyjaszewski, K. (2001). Controlled/living radical polymerization in aqueous media: homogeneous and heterogeneous systems. Progress in Polymer Science, 26, 2083–2134.CrossRefGoogle Scholar
  136. Radomska-Soukharev, A. (2007). Stability of lipid excipients in solid lipid nanoparticles. Advanced Drug Delivery Reviews, 59, 411–418.  https://doi.org/10.1016/j.addr.2007.04.004.CrossRefGoogle Scholar
  137. Rahman, M., Akhter, S., Ahmad, J., Ahmad, M. Z., Beg, S., & Ahmad, F. J. (2015). Nanomedicine-based drug targeting for psoriasis: Potentials and emerging trends in nanoscale pharmacotherapy nanoscale pharmacotherapy. Expert Opinion on Drug Delivery, 12, 635–652.  https://doi.org/10.1517/17425247.2015.982088.CrossRefGoogle Scholar
  138. Rao, J. P., & Geckeler, K. E. (2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science, 36, 887–913.  https://doi.org/10.1016/j.progpolymsci.2011.01.001.CrossRefGoogle Scholar
  139. Rawat, M., Singh, D., Saraf, S., & Saraf, S. (2008). Lipid carriers: A versatile delivery vehicle for proteins and peptides. Yakugaku Zasshi, 128, 269–280.  https://doi.org/10.1248/yakushi.128.269.CrossRefGoogle Scholar
  140. Reis, C. P., Martinho, N., Rosado, C., Fernandes, A. S., & Roberto, A. (2014). Design of polymeric nanoparticles and its applications as drug delivery systems for acne treatment. Drug Development and Industrial Pharmacy, 40, 409–417.  https://doi.org/10.3109/03639045.2013.767826.CrossRefGoogle Scholar
  141. Reis, C. P., Neufeld, R. J., Ribeiro, A. J., & Veiga, F. (2006). Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 2, 8–21.  https://doi.org/10.1016/j.nano.2005.12.003.CrossRefGoogle Scholar
  142. Sakurai, F., Inoue, R., Nishino, Y., & Okuda, A. (2000). Effect of DNA/liposome mixing ratio on the physicochemical characteristics, cellular uptake and intracellular trafficking of plasmid DNA/cationic liposome complexes and subsequent gene expression. Journal of Controlled Release, 66, 255–269.CrossRefGoogle Scholar
  143. Salvalaio, M., Rigon, L., Belletti, D., D’Avanzo, F., Pederzoli, F., Ruozi, B., et al. (2016). Targeted polymeric nanoparticles for brain delivery of high molecular weight molecules in lysosomal storage disorders. PLoS ONE, 11, 1–17.  https://doi.org/10.1371/journal.pone.0156452.CrossRefGoogle Scholar
  144. Schäfer-korting, M., Mehnert, W., & Korting, H. (2007). Lipid nanoparticles for improved topical application of drugs for skin diseases ☆. Advanced Drug Delivery Reviews, 59, 427–443.  https://doi.org/10.1016/j.addr.2007.04.006.CrossRefGoogle Scholar
  145. Schubert, M. A., & Muller-Goymann, C. C. (2003). Solvent injection as a new approach for manufacturing lipid nanoparticles—Evaluation of the method and process parameters. European Journal of Pharmaceutics and Biopharmaceutics, 55, 125–131.  https://doi.org/10.1016/S0939-6411(02)00130-3.CrossRefGoogle Scholar
  146. Schubert, M. A., Schicke, B. C., & Müller-Goymann, C. C. (2005). Thermal analysis of the crystallization and melting behavior of lipid matrices and lipid nanoparticles containing high amounts of lecithin. International Journal of Pharmaceutics, 298, 242–254.  https://doi.org/10.1016/j.ijpharm.2005.04.014.CrossRefGoogle Scholar
  147. Seyfoddin, A., Shaw, J., & Al-Kassas, R. (2010). Solid lipid nanoparticles for ocular drug delivery. Drug Delivery, 17, 467–489.  https://doi.org/10.1201/9781315225364.CrossRefGoogle Scholar
  148. Shahgaldian, P., Da Silva, E., Coleman, A. W., Rather, B., & Zaworotko, M. J. (2003). Para-acyl-calix-arene based solid lipid nanoparticles (SLNs): A detailed study of preparation and stability parameters. International Journal of Pharmaceutics, 253, 23–38.  https://doi.org/10.1016/S0378-5173(02)00639-7.CrossRefGoogle Scholar
  149. Shahin, M., & Lavasanifar, A. (2010). Novel self-associating poly (ethylene oxide)-b-poly (ε-caprolactone) based drug conjugates and nano-containers for paclitaxel delivery. International Journal of Pharmaceutics, 389, 213–222.  https://doi.org/10.1016/j.ijpharm.2010.01.015.CrossRefGoogle Scholar
  150. Shalviri, A., Foltz, W. D., Cai, P., Rauth, A. M., & Wu, X. Y. (2013). Multifunctional terpolymeric MRI contrast agent with superior signal enhancement in blood and tumor. Journal of Controlled Release, 167, 11–20.  https://doi.org/10.1016/j.jconrel.2013.01.014.CrossRefGoogle Scholar
  151. Sheihet, L., Piotrowska, K., Dubin, R. A., Kohn, J., & Devore, D. (2007). Effect of tyrosine-derived triblock copolymer compositions on nanosphere self-assembly and drug delivery. Biomacromolecules, 8, 998–1003.  https://doi.org/10.1021/bm060860t.CrossRefGoogle Scholar
  152. Shen, J., Sun, M., Ping, Q., Ying, Z., & Liu, W. (2010). Incorporation of liquid lipid in lipid nanoparticles for ocular drug delivery enhancement. Nanotechnology, 21, 025101.  https://doi.org/10.1088/0957-4484/21/2/025101.CrossRefGoogle Scholar
  153. Shi, Y., Su, C., Cui, W., Li, H., Liu, L., Feng, B., et al. (2014). Gefitinib loaded folate decorated bovine serum albumin conjugated carboxymethyl-betacyclodextrin nanoparticles enhance drug delivery and attenuate autophagy in folate receptor-positive cancer cells. Journal of Nanobiotechnology, 12, 1–11.  https://doi.org/10.1186/s12951-014-0043-7.CrossRefGoogle Scholar
  154. Silva, A. C., González-mira, E., García, M. L., Egea, M. A., Fonseca, J., Silva, R., et al. (2011). Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound. Colloids and Surfaces B: Biointerfaces, 86, 158–165.  https://doi.org/10.1016/j.colsurfb.2011.03.035.CrossRefGoogle Scholar
  155. Sjöström, B., & Bergenståhl, B. (1992). Preparation of submicron drug particles in lecithin-stabilized ow emulsions: I. Model studies of the precipitation of cholesteryl acetate. International Journal of Pharmaceutics, 84, 107–116.  https://doi.org/10.1016/0378-5173(92)90051-3.CrossRefGoogle Scholar
  156. Souto, E. B., Doktorovova, S., Gonzalez-Mira, E., Egea, M. A., & Garcia, M. L. (2010). Feasibility of lipid nanoparticles for ocular delivery of anti-inflammatory drugs. Current Eye Research, 35, 537–552.  https://doi.org/10.3109/02713681003760168.CrossRefGoogle Scholar
  157. Souza, L. G., Silva, E. J., Martins, A. L. L., Mota, M. F., Braga, R. C., Lima, E. M., et al. (2011). Development of topotecan loaded lipid nanoparticles for chemical stabilization and prolonged release. European Journal of Pharmaceutics and Biopharmaceutics, 79, 189–196.  https://doi.org/10.1016/j.ejpb.2011.02.012.CrossRefGoogle Scholar
  158. Srikar, R., Upendran, A., & Kannan, R. (2014). Polymeric nanoparticles for molecular imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 6, 245–267.  https://doi.org/10.1002/wnan.1259.CrossRefGoogle Scholar
  159. Takeuchi, I., Hida, Y., & Makino, K. (2018). Minoxidil-encapsulated poly(L-lactide-co -glycolide) nanoparticles with hair follicle delivery properties prepared using W/O/W solvent evaporation and sonication. BioMedical Materials and Engineering, 29, 217–228.  https://doi.org/10.3233/BME-171724.CrossRefGoogle Scholar
  160. Thickett, S. C., & Gilbert, R. G. (2007). Emulsion polymerization: State of the art in kinetics and mechanisms. Polymer (Guildf), 48, 6965–6991.  https://doi.org/10.1016/j.polymer.2007.09.031.CrossRefGoogle Scholar
  161. Tiarks, F., Landfester, K., & Antonietti, M. (2001). Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir, 17, 908–918.CrossRefGoogle Scholar
  162. Trapani, A., De Giglio, E., Cafagna, D., Denora, N., Agrimi, G., Cassano, T., et al. (2011). Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. International Journal of Pharmaceutics, 419, 296–307.  https://doi.org/10.1016/j.ijpharm.2011.07.036.CrossRefGoogle Scholar
  163. Trotta, M., Cavalli, R., Trotta, C., Bussano, R., & Costa, L. (2010). Electrospray technique for solid lipid-based particle production. Drug Development and Industrial Pharmacy, 36, 431–438.  https://doi.org/10.3109/03639040903241817.CrossRefGoogle Scholar
  164. Tsai, M. J., Wu, P. C., Bin, Huang Y., Chang, J. S., Lin, C. L., Tsai, Y. H., et al. (2012). Baicalein loaded in tocol nanostructured lipid carriers (tocol NLCs) for enhanced stability and brain targeting. International Journal of Pharmaceutics, 423, 461–470.  https://doi.org/10.1016/j.ijpharm.2011.12.009.CrossRefGoogle Scholar
  165. Turos, E., Shim, J. Y., Wang, Y., Greenhalgh, K., Reddy, G. S. K., Dickey, S., et al. (2007). Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents. Bioorganic & Medicinal Chemistry Letters, 17, 53–56.  https://doi.org/10.1016/j.bmcl.2006.09.098.CrossRefGoogle Scholar
  166. Üstündaǧ-Okur, N., Gökçe, E. H., Bozbiyik, D. I., Eǧrilmez, S., Özer, Ö., & Ertan, G. (2014). Preparation and in vitro-in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. European Journal of Pharmaceutical Sciences, 63, 204–215.  https://doi.org/10.1016/j.ejps.2014.07.013.CrossRefGoogle Scholar
  167. Vandervoort, J., & Ludwig, A. (2004). Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. European Journal of Pharmaceutics and Biopharmaceutics, 57, 251–261.  https://doi.org/10.1016/S0939-6411(03)00187-5.CrossRefGoogle Scholar
  168. Wagner, A., & Vorauer-Uhl, K. (2011). Liposome technology for industrial purposes. Journal of Drug Delivery, 2011, 1–9.  https://doi.org/10.1155/2011/591325.CrossRefGoogle Scholar
  169. Wang, J. J., Liu, K. S., Sung, K. C., Tsai, C. Y., & Fang, J. Y. (2009). Lipid nanoparticles with different oil/fatty ester ratios as carriers of buprenorphine and its prodrugs for injection. European Journal of Pharmaceutical Sciences, 38, 138–146.  https://doi.org/10.1016/j.ejps.2009.06.008.CrossRefGoogle Scholar
  170. Wang, J. J., Zeng, Z. W., Xiao, R. Z., Xie, T., Zhou, G. L., Zhan, X. R., et al. (2011). Recent advances of chitosan nanoparticles as drug carriers. International Journal of Nanomedicine, 6, 765–774.  https://doi.org/10.2147/IJN.S17296.CrossRefGoogle Scholar
  171. Wang, S., Wang, X., & Zhang, Z. (2007). Preparation of polystyrene particles with narrow particle size distribution by γ-ray initiated miniemulsion polymerization stabilized by polymeric surfactant. European Polymer Journal, 43(43), 178–184.  https://doi.org/10.1016/j.eurpolymj.2006.09.010.CrossRefGoogle Scholar
  172. Watanabe, J., & Ishihara, K. (2006). Sequential enzymatic reactions and stability of biomolecules immobilized onto phospholipid polymer nanoparticles. Biomacromolecules, 7, 171–175.  https://doi.org/10.1021/bm050544z.CrossRefGoogle Scholar
  173. Weber, S., Zimmer, A., & Pardeike, J. (2014). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: A review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 86, 7–22.  https://doi.org/10.1016/j.ejpb.2013.08.013.CrossRefGoogle Scholar
  174. Werner, M. E., Cummings, N. D., Sethi, M., Wang, E. C., Sukumar, R., Moore, D. T., et al. (2013). Preclinical evaluation of genexol-pm, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. International Journal of Radiation Oncology Biology Physics, 86, 463–468.  https://doi.org/10.1016/j.ijrobp.2013.02.009.CrossRefGoogle Scholar
  175. Wissing, S. A., Kayser, O., & Muller, R. H. (2004). Solid lipid nanoparticles for topical drug delivery. Advanced Drug Delivery Reviews, 56, 1257–1272.  https://doi.org/10.1201/9781315225364.CrossRefGoogle Scholar
  176. Wissing, S. A., Lippacher, A., & Muller, R. H. (2001). Investigations on the occlusive properties of solid lipid nanoparticles (SLN). Journal of Cosmetic Science, 52, 313–324.Google Scholar
  177. Wu, X., & Guy, R. H. (2009). Applications of nanoparticles in topical drug delivery and in cosmetics. Journal of Drug Delivery Science and Technology, 19, 371–384.  https://doi.org/10.1016/S1773-2247(09)50080-9.CrossRefGoogle Scholar
  178. Xia, Q., Saupe, A., Müller, R. H., & Souto, E. B. (2007). Nanostructured lipid carriers as novel carrier for sunscreen formulations. International Journal of Cosmetic Science, 29, 473–482.  https://doi.org/10.1111/j.1468-2494.2007.00410.x.CrossRefGoogle Scholar
  179. Xu, J., Ganesh, S., & Amiji, M. (2012). Non-condensing polymeric nanoparticles for targeted gene and siRNA delivery. International Journal of Pharmaceutics, 427, 21–34.  https://doi.org/10.1016/j.ijpharm.2011.05.036.CrossRefGoogle Scholar
  180. Yang, S., Zhu, J., Lu, Y., Liang, B., & Yang, C. (1999). Body distribution of campthothecin solid lipid nanoparticles after oral administration. Pharmaceutical Research, 16, 751–757.CrossRefGoogle Scholar
  181. Yin, Q., Yap, F. Y., Yin, L., Ma, L., Zhou, Q., Dobrucki, L. W., et al. (2013). Poly(iohexol) nanoparticles as contrast agents for in vivo X-ray computed tomography imaging. Journal of the American Chemical Society, 135, 13620–13623.  https://doi.org/10.1021/ja405196f.CrossRefGoogle Scholar
  182. York, P. (1992). Strategies for particle design using supercritical fluid technologies. Pharmaceutical Science & Technology Today, 2, 430–440.CrossRefGoogle Scholar
  183. Yousry, C., Fahmy, R. H., Essam, T., El-laithy, H. M., & Elkheshen, S. A. (2016). Nanoparticles as tool for enhanced ophthalmic delivery of vancomycin: A multidistrict-based microbiological study, solid lipid nanoparticles formulation and evaluation. Drug Development and Industrial Pharmacy, 42, 1752–1762.  https://doi.org/10.3109/03639045.2016.1171335.CrossRefGoogle Scholar
  184. Yu, M. K., Park, J., & Jon, S. (2012). Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics, 2, 3–44.  https://doi.org/10.7150/thno.3463.CrossRefGoogle Scholar
  185. Zara, G. P., Cavalli, R., Bargoni, A., Fundaro, A., Vighetto, D., & Gasco, M. R. (2002). Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: Pharmacokinetics and distribution of doxorubicin in brain and other tissues. Journal of Drug Targeting, 10, 327–335.  https://doi.org/10.1080/10611860290031868.
  186. Zhang, C., Wan, X., Zheng, X., Shao, X., Liu, Q., Zhang, Q., et al. (2014a). Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials, 35, 456–465.  https://doi.org/10.1016/j.biomaterials.2013.09.063.CrossRefGoogle Scholar
  187. Zhang, H. W., Wang, L. Q., Xiang, Q. F., Zhong, Q., Chen, L. M., Xu, C. X., et al. (2014b). Specific lipase-responsive polymer-coated gadolinium nanoparticles for MR imaging of early acute pancreatitis. Biomaterials, 35, 356–367.  https://doi.org/10.1016/j.biomaterials.2013.09.046.CrossRefGoogle Scholar
  188. Zhang, X., Pan, W., Gan, L., Zhu, C., Gan, Y., & Nie, S. (2008a). Preparation of a dispersible PEGylate nanostructured lipid carriers (NLC) loaded with 10-hydroxycamptothecin by spray-drying. Chemical and Pharmaceutical Bulletin (Tokyo), 56, 1645–1650.  https://doi.org/10.1248/cpb.56.1645.CrossRefGoogle Scholar
  189. Zhang, Z., Sha, X., Shen, A., Wang, Y., Sun, Z., Gu, Z., et al. (2008b). Polycation nanostructured lipid carrier, a novel nonviral vector constructed with triolein for efficient gene delivery. Biochemical and Biophysical Research Communications, 370, 478–482.  https://doi.org/10.1016/j.bbrc.2008.03.127.CrossRefGoogle Scholar
  190. Zhang, Z., Tsai, P., Ramezanli, T., & Michniak-Kohn, B. B. (2013). Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. WIREs Nanomedicine and Nanobiotechnology, 5, 205–218.  https://doi.org/10.1002/wnan.1211.CrossRefGoogle Scholar
  191. Zhao, S., Tan, S., Guo, Y., Huang, J., Chu, M., Liu, H., et al. (2013). PH-sensitive docetaxel-loaded d -α-tocopheryl polyethylene glycol succinate-poly(β-amino ester) copolymer nanoparticles for overcoming multidrug resistance. Biomacromolecules, 14, 2636–2646.  https://doi.org/10.1021/bm4005113.CrossRefGoogle Scholar
  192. zur Mühlen, A., Schwarz, C., & Mehnert, W. (1998). Solid lipid nanoparticles (SLN) for controlled drug delivery–drug release and release mechanism. European Journal of Pharmaceutics and Biopharmaceutics, 45:149–155.  https://doi.org/10.1016/s0939-6411(97)00150-1.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of PharmacyPhiladelphia UniversityAmmanJordan
  2. 2.Department of Pharmaceutical Sciences, Faculty of PharmacyYarmouk UniversityIrbidJordan

Personalised recommendations