An Overview of Nanotoxicological Effects Towards Plants, Animals, Microorganisms and Environment

  • V. Ananthi
  • K. Mohanrasu
  • T. Boobalan
  • K. Anand
  • M. Sudhakar
  • Anil Chuturgoon
  • V. Balasubramanian
  • R. Yuvakkumar
  • A. ArunEmail author
Part of the Engineering Materials book series (ENG.MAT.)


In recent years, nanotechnology has reached the limelight of research in applications of medicine and technology. Due to its onset, huge varieties of nanoparticles possessing significant characters are synthesized with broad application fields. Even though these particles are infesting our present life; conflictual views regarding their medical and biological effects are debatable. The non biodegradable nature and nanosize are the alarming features of the nanoparticles that confront potential threats to both environment and biomedical field on its expanding usage. NPs synthesized from heavy metals like lead, mercury and tin are proclaimed as stringent and stable compounds for degradation, hence results in environmental biohazards. The extensive applications of silver nanoparticles in biosensing, cosmetics, medical devices, food and clothing products inflates its human exposure and obviously resulted in toxicity (short and long term). In vitro studies revealed various cytotoxic effects in the cells of mammals such as brain, liver, lung, skin, reproductive organs and vascular system. Furthermore, ingestion, inhalation or injection of nanoparticles in intraperitoneal region resulted in toxic effect of multiple organs inclusively brain. Accounting the metal nanoparticles biohazardous effects like ROS (Reactive oxygen species) generation, DNA damage, protein denaturation and lipid peroxidation has been proved on carbon based nanoparticles, organic lipid based nanoparticles, mineral based nanoparticles, nano diamonds, nano composites, etc. Although, nanotechnology has become an advent field of research nowadays, it is importing significant environmental and health hazards thus couldn’t be beneficial to both society and economy.


Nano particles Toxicity Nano composites Bioeconomy Human health 



Authors thanks the financial support given by RUSA – Phase 2.0 grant sanctioned vide Letter No. F.24- 51/2014- U, Policy (TNMulti-Gen), Dept. of Edn. Govt. of India, Dt. 09.10.2018.


  1. Anderson, D. S., Patchin, E. S., Silva, R. M., Uyeminami, D. L ., Sharmah, A., Guo, T., et al. (2015). Influence of particle size on persistence and clearance of aerosolized silver nanoparticles in the rat lung. Toxicological Sciences, 144, 366–381.
  2. Anjum, N. A., Gill, S. S., Duarte, A. C, Perelra, E., & Ahmad, I. (2013). Silver nanoparticles in soil-plant systems. Journal of Nanoparticle Research, 15, 1896–1897.
  3. Antisari, L. V., Carbone, S., GattiA Vianello, G., Nannipieri, P., et al. (2015). Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag Co, Ni) engineered nanoparticles. Environmental Science and Pollution Research, 22, 1841–1853.
  4. Arruda, S. C. C., Silva, A. L. D., Galazzi, R. M., Azevedo, R. A., & Arruda, M. A. (2015). Nanoparticles applied to plant science: A review. Talanta, 131, 693–705.
  5. Aruoja, V., Dubourguier, H. C., Kasemets, K., & Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO to microalgae Pseudokirchneriella subcapitata. Science of the Total Environment, 407(4):1461–1468.
  6. Aschberger, K., Johnston, H. J., Stone, V., Aitken, R. J., Hankin, S. M., Peters, S. A., et al. (2010) Review of carbon nanotubes toxicity and exposure-appraisal of human health risk assessment based on open literature. Critcal Reviews in Toxicology, 40, 759–790.
  7. Asharani, P. V., Wu, L. Y., Gong, Z., & Valiyaveettil, S. (2008). Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 19, 255102.
  8. Asharani, P. V., Xinyi, N., Hande, M. P., & Valiyaveettil, S. (2010). DNA damage and p53-mediated growth arrest in human cells treated with platinum nanoparticles. Nanomedicine, 5, 51–64.
  9. Asli, S., & Neumann, P. M. (2009). Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell & Environment, 32, 577–584. Scholar
  10. Atha, D. H., Wang, H. H., Petersen, E. J., Cleveland, D., Holbrook, R. D., Jaruga, P., et al. (2012). Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environment Science & Technology, 46, 1819–1827.
  11. Atkinson, J., & Truter, E. (2009). Alexander’s last days: malaria and mind games. Acta Classica, 52, 23–46.Google Scholar
  12. Babu, M. Y., Palanikumar, L., Nagarani, N., Devi, V. J., Kumar, S. R., Ramakritinan, C. M., et al. (2014). Cadmium and copper toxicity in three marine macroalgae: evaluation of the biochemical responses and DNA damage. Environmental Science and Pollution Research, 21, 9604–9616.
  13. Balasubramanian, S. K., Jittiwat, J., Manikandan, J., Ong, C. N., Yu, L. E., & Ong, W. Y. (2010). Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials, 31, 2034–2042.
  14. Ballestri, M., Baraldi, A., Gatti, A. M., Furci, L., Bagni, A., Loria, P., et al. (2001). Liver and kidney foreign bodies granulomatosis in a patient with malocclusion, bruxism, and worn dental prostheses. Gastroenterology, 121, 1234–1238.
  15. Becker, H., Herzberg, F., Schulte, A., & Kolossa-Gehring, M. (2011). The carcinogenic potential of nanomaterials, their release from products and options for regulating them. International Journal of Hygiene and Environmental Health, 214(3): 231–238.
  16. Beddoes, C. M., Case, C. P., & Briscoe, W. H. (2015). Understanding nanoparticle cellular entry: A physicochemical perspective. Advances in Colloid and Interface Science, 218, 48–68.
  17. Begum, P., & Fugetsu, B. (2012). Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. Journal of Hazardous Materials, 243, 212–222.
  18. Begum, P., Ikhtiari, R., & Fugetsu, B. (2014). Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species. Nanomaterials, 4, 203–221.
  19. Begum, P., Ikhtiari, R., Fugetsu, B., Matsuoka, M., TsukasaAkasaka, T., & Watari, F. (2012). Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Applied Surface Science, 262, 120–124.
  20. Bhattacharjee, S., Haan, L. H. J. D., Evers, N. M., Jiang, X., Marcelis, A. T, Zuilhof, H., et al. (2010). Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Particle and Fibre Toxicology, 7, 25.
  21. Bilberg, K., Hovgaard, M. B., Besenbacher, F., & Baatrup, E. (2012). In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). Journal of Toxicology, 2012, 293784–293784.
  22. Boonyanitipong, P., Kositsup, B., Kumar, P., Baruah, S., & Dutta, J. (2011). Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. International Journal of Bioscience, Biochemistry and Bioinformatics, 1(4), 282–285.
  23. Bruinink, A., Wang, J., & Wick, P. (2015). Effect of particle agglomeration in nanotoxicology. Archives of Toxicology, 89, 659–675.
  24. Burklew, C. E., Ashlock, J., Winfrey, W. B., & Zhang, B. (2012). Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One7.
  25. Burugapalli, K., Razavi, M., Zhou, L., & Huang, Y. (2016). In vitro cytocompatibility study of a medical ß-type Ti-35.5 Nb-5.7 Ta titanium alloy. Journal of Biomaterials and Tissue Engineering, 6, 141–8.
  26. Buzea, C., & Pacheco, I. (2017). Nanomaterials and their classification. In: Shukla, A.K. (Ed) EMR/ESR/EPR spectroscopy for characterization of nanomaterials, Advanced structured materials, Vol. 62, pp. 3–45. New York: Springer. ISBN 978-981-10-6214-8.Google Scholar
  27. Buzea, C., Pacheco, I. I, Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2:MR17–MR71.
  28. Calderon-Garciduenas, L., Reynoso-Robles, R., Vargas-Martinez, J., Gómez-Maqueo-Chew, A., Pérez-Guillé, B., Mukherjee, P.S., et al. (2016). Prefrontal white matter pathology in air pollution exposed Mexico City young urbanites and their potential impact on neurovascular unit dysfunction and the development of Alzheimer’s disease. Environmental Research, 146, 404–417.
  29. Caley, E. R. (1928). Mercury and its compounds in ancient times. Journal of Chemical Education, 5(4), 419.
  30. Carlson, C., Hussain, S. M., Schrand, A. M., Braydich-Stolle, L. K., Hess, K. L., Jones, R. L., et al. (2008). Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. The Journal of Physical Chemistry B, 112, 13608–13619.
  31. Castiglione, M. R, Giorgetti, L., Geri, C., & Cremonini, R. (2011). The effects of nano-TiO2 on seed germination,development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. Journal of Nanoparticle Research, 13, 2443–2449.
  32. Chattopadhyay, S., Dash, S. K, Tripathy, S., Das, B., Mandal, D., Pramanik, P., et al. (2015). Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chemical Biological Interactions, 226, 58-71.
  33. Chen, M., Qin, X., & Zeng, G. (2017). Biodiversity change behind wide applications of nanomaterials? Nano Today, 17, 11-13.
  34. Chen, R., Ratnikova, T. A., Stone, M. B., Lin, S., Lard, M., Huang, G., et al. (2010). Differential uptake of carbon nanoparticles by plant and mammalian cells. Small, 6, 612–617.
  35. Chen, X., & Mao, S. S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews, 107, 2891–2959.
  36. Cheng, L. C., Jiang, X., Wang, J., Chen, C., & Liu, R. S. (2013). Nano-bio effects: interaction of nanomaterials with cells. Nanoscale, 5, 3547–3569 (2013).
  37. Cherchi, C., Chernenko, T., Diem, M., & Gu, A. Z. (2011). Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization. Environmental Toxicology and Chemistry, 30(4), 861–869.
  38. Chichiricco, G., & Poma, A. (2015). Penetration and toxicity of nanomaterials in higher plants. Nanomaterials, 5, 851–873.
  39. Chin-Chan, M., Navarro-Yepes, J., & Quintanilla-Vega, B. (2015). Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Frontiers in Cellular Neuroscience, 9, 124.
  40. Cho, W. S., Cho, M. J., Jeong, J., Choi, M., Cho, H.Y., Han, B.S., et al. (2009). Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicology and Applied Pharmacology, 236, 16–24.
  41. Christensen, F. M., Johnston, H. J., Stone, V., Aitken, R. J., Hankin, S., Peters, S., et al. (2010). Nano-silver – feasibility and challenges for human health risk assessment based on open literature. Nanotoxicology, 4, 284–295.
  42. Cilliers, L., & Retief, F. P. (2000). Poisons, poisoning and the drug trade in ancient Rome. Akroterion, 45, 87–88.
  43. Coccini, T., Grandi, S., Lonati, D., Locatelli, C., & De Simone, U. (2015). Comparative cellular toxicity of titanium dioxide nanoparticles on human astrocyte and neuronal cells after acute and prolonged exposure. Neurotoxicology, 48, 77–89.
  44. Cui, D., Tian, F., Ozkan, C. S., Wang, M., & Gao, H. (2005). Effect of single wall carbon nanotubes on human HEK293 cells. Toxicology Letters 155(1), 73–85.
  45. Dahl, J. A., Maddux, B. L. S., & Hutchison, J. E. (2007). Toward greener nanosynthesis. Chemical Reviews, 107, 2891–2959.
  46. Davidson, R. A, Anderson, D. S, Van Winkle, L. S, Pinkerton, K. E, & Guo, T. (2015). Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy. The Journal of Physical Chemistry A, 119, 281–289.
  47. Denditius, A. P., Utsunomiya, S., Reich, M., Kesler, S. E., Ewing, R. C., Hough, R., et al. (2011). Trace metal nanoparticles in pyrite. Ore Geology Reviwes, 42(1), 32–46.
  48. Deng, Y. Q., White, J. C., & Xing, B. S. (2014). Interactions between engineered nanomaterials and agricultural crops: Implications for food safety. Journal of Zhejiang University SCIENCE A, 15, 552–572.
  49. Dimkpa, C. O., McLean, J. E., Martineau, N., Britt, D. W., Haverkamp, R., & Anderson, A. J. (2013). Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environmental Science Technology, 47, 1082–1090.
  50. Donaldson, K., Stone, V., Clouter, A., Renwick, L., & MacNee, W. (2001). Ultrafine particles. Occupational and Environmental Medicine, 58(3), 211–216.Google Scholar
  51. El Badawy, A. M., Luxton, T. P, Silva, R. G, Scheckel, K. G, Suidan, M. T, Tolaymat, T. M (2010). Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environmental Science & Technology, 44, 1260-1266.
  52. Erdem, A., Metzler, D. M, Cha, D. K, & Huang, C. P. (2015). The short-term toxic effects of TiO2. Environ nanoparticles toward bacteria through viability, cellular respiration, and lipid peroxidation. Science Pollution Research, 22, 17917–17924.
  53. Faisal, M., Saquib, Q., Alatar, A. A., Al-Khedhairy, A. A., Hegazy, A. K., & Musarrat, J. (2013). Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. Journal of Hazardous Materials, 250, 318–332.
  54. Feichtmeier, N. S., Walther, P., & Leopold, K. (2015). Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles. Environmental Science Pollution Research, 22, 8549–8558.
  55. Gagnon, J., & Fromm, K. M. (2015). Toxicity and protective effects of cerium oxide nanoparticles (Nanoceria) depending on their preparation method, particle size, cell type, and exposure route. European Journal of Inorganic Chemistry, 4510–4517.
  56. Garcia-Cambero, J. P., Nunez Garcia, M., Lopez, G. D., Herranz, A. L., Cuevas, L., Perez-Pastrana, E., et al. (2013). Converging hazard assessment of gold nanoparticles to aquatic organisms. Chemosphere, 93(6), 1194–1200.
  57. Garcia-Ivars, J., Iborra-Clar, M. I., Alcaina-Miranda, M .I., & Van Der Bruggen, B. (2015). Comparison between hydrophilic and hydrophobic metal nanoparticles on the phase separation phenomena during formation of asymmetric polyethersulphone membranes. Journal of Membrane Science, 493, 709–722.
  58. Gatoo, M. A., Naseem, S., Arfat, M. Y., Dar, A. M., Qasim, K., & Zubair, S. (2014). Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomedical Research International, 2014, 498420.
  59. Gatti, A. M. (2004). Biocompatibility of micro- and nano-particles in the colon. Part II. Biomaterials, 25, 385–392.
  60. Gatti, A. M., & Montanari, S. (2006). Retrieval analysis of clinical explanted vena cava filters. Journal of Biomedical Materials Research Part B 77B, 307–314.
  61. Gatti, A. M., & Rivasi, F. (2002). Biocompatibility of micro- and nanoparticles. Part I: in liver and kidney. Biomaterials, 23, 2381–2387.
  62. Ge, S., Wang, G., Shen, Y., Zhang, Q., Jia, D., Wang, H., et al. (2011). Cytotoxic effects of MgO nanoparticles on human umbilical vein endothelial cells in vitro. IET Nanobiotechnology, 5(2), 36–40.
  63. Geiser, M., & Kreyling, W. G. (2010). Deposition and biokinetics of inhaled nanoparticles. Particle and Fibre Toxicology, 7, 2.
  64. Ghobadian, M., Nabiuni, M., Parivar, K., Fathi, M., & Pazooki, J. (2015). Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 122(1), 260–267.
  65. Ghodake, G., Seo, Y. D., & Lee, D. S. (2011). Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. Journal of Hazardous Materials, 186, 952–955.
  66. Ghosh, M., Bhadra, S., Adegoke, A., Bandyopadhyay, M., & Mukherjee, A. (2015). MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutation Research, 774, 49–58.
  67. Gonzalez-Maciel, A., Reynoso-Robles, R., Torres-Jardon, R., Mukherjee, P. S., & Calderón-Garcidueñas, L. (2017). Combustion-derived nanoparticles in key brain target cells and organelles in young urbanites: culprit hidden in plain sight in Alzheimer’s disease development. Journal of Alzheimer’s Disease, 59, 189–208.
  68. Goodman, C. M., McCusker, C. D., Yilmaz, T., & Rotello, V. M. (2004). Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chemistry, 15, 897–900.
  69. Gosens, I., Kermanizadeh, A., Jacobsen, N. R., Lenz, A .G., Bokkers, B., de Jong, W. H., et al. (2015). Comparative hazard identification by a single dose lung exposure of zinc oxide and silver nanomaterials in mice. PLoS One, 10, e0126934.
  70. Gouveia, C., Kreusch, M., Schmidt, É. C., Felix, M. R., Osorio, L. K., Pereira, D. T., et al. (2013). The effects of lead and copper on the cellular architecture and metabolism of the red alga Gracilaria domingensis. Microscopy and Microanalysis, 19(3), 513–524.
  71. Guo, H., & Barnard, A. S (2013). Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability. Journal of Materials Chemistry A, 1, 27-42.
  72. Gurr, J. R, Wang, A. S, Chen, C. H, & Jan, K. Y. (2005). Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology, 213, 66–73.
  73. Guzman, K. A. D., Taylor, M. R., & Banfield, J. F. (2006). Environmental risks of nanotechnology: National nanotechnology initiative funding, 2000–2004. Environment Science Technology, 40, 1401–1407.
  74. Hadrup, N., & Lam, H. R. (2014). Oral toxicity of silver ions, silver nanoparticles and colloidal silver – a review. Regulatory Toxicology and Pharmacology, 68, 1–7.
  75. Hazeem, L. J., Bououdina, M., Rashdan, S., Brunet, L., Slomianny, C., & Boukherroub, R. (2016). Cumulative effect of zinc oxide and titanium oxide nanoparticles on growth and chlorophyll a content of Picochlorum sp. Environmental Science and Pollution Research International, 23(3), 2821–2830.
  76. He, D., Dorantes-Aranda, J. J, & Waite, T. D. (2012). Silver nanoparticle-algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects. Environmental Science Technology, 46(16), 8731–8738.
  77. Hillyer, J. F., & Albrecht, R. M. (2001). Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. Journal of Pharmaceutical Sciences, 90, 1927–1936.
  78. Hong, J., Peralta-Videa, J. R., Rico, C., Sahi, S., Viveros, M. N., Bartonjo, J., et al. (2014). Evidence of translocation and physiological impacts of foliar applied CeO nanoparticles on cucumber (Cucumis sativus) plants. Environmental Science Technology, 48, 4376–4385.
  79. Hsiao, I. L., & Huang, Y. J. (2011). Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Science of the Total Environment, 409, 1219–1228.
  80. Hund-Rinke, K., Schlich, K., & Klawonn, T. (2012). Influence of application techniques on the ecotoxicological effects of nanomaterials in soil. Environmental Sciences Europe, 24(1), 30. /
  81. Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T, & Schlager, J. J. (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro, 19, 975 –983.
  82. Iannitti, T., Capone, S., Gatti, A., Capitani, F., Cetta, F., & Palmieri, B. (2010). Intracellular heavy metal nanoparticle storage: progressive accumulation within lymph nodes with transformation from chronic inflammation to malignancy. International Journal of Nanomedicine, 5, 955–960.
  83. Janata, J. (2008). Introduction: Modern topics in chemical sensing. Chemical Reviews, 108, 327–328.
  84. Johnston, H., Pojana, G., Zuin, S., Jacobsen, N. R, Møller, P., Loft, S., et al. (2012). Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: Potential solutions to current and future challenges. Critical Reviews in Toxicology, 43(1), 1–20. /
  85. Johnston, H. J., Hutchison, G., Christensen, F. M., Peters, S., Hankin, S., & Stone, V. (2010). A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Critical Reviews in Toxicology, 40, 328–346.
  86. Kantiani, L., Llorca, M., Sanchi Sandaloval, J., Farre, M., & Barcelo, D. (2010). Emerging food contaminants: A review. Analytical and Bioanalytical Chemistry, 398(6), 2413–2427.
  87. Karpeta-Kaczmarek, J., Kędziorski, A., Augustyniak-Jabłokow, M. A., Dziewięcka, M., & Augustyniak, M. (2018). Chronic toxicity of nanodiamonds can disturb development and reproduction of Acheta domesticus L. Environmental Research, 166, 602–609.
  88. Kasemets, K., Ivask, A., Dubourguier, H., & Kahru, A. (2009). Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicology in Vitro, 23, 1116–1122.
  89. Kettler, K., Veltman, K., van de Meent, D., van Wezel, A., & Hendriks, A. J. (2014). Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environmental Toxicology and Chemistry, 33, 481–492.
  90. Khlebtsov, N., & Dykman, L. (2011). Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chemical Society Reviews, 40, 1647–1671.
  91. Khodaei, M., Meratian, M., Savabi, O., & Razavi, M. (2016). The effect of pore structure on the mechanical properties of titanium scaffolds. Materials Letters, 171, 308–311.
  92. Kim, S., Choi, J. E., Choi, J., Chung, K. H., Park, K., Yi, J., et al. (2009). Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicology in Vitro, 23, 1076–1084.
  93. Kisin, E. R., Murray, A. R, Keane, M. J, Shi, X. C, Schwegler-Berry, D., Gorelik, O., et al. (2007). Single-walled carbon nanotubes: Geno- and cytotoxic effects in lung fibroblast V79 cells. Journal of Toxicology and Environmental Health, Part A, 70 (24), 2071–2079.
  94. Klaine, S. J., Alvarez, P. J. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., et al. (2008). Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27, 1825–1851.
  95. Kohler, A. R., Som, C., Helland, A., & Gottschalk, F. (2008). Studying the potential release of carbon nanotubes throughout the application life cycle. Journal of Cleaner Production, 16, 927–937.
  96. Konieczny, P., Goralczyk, A. G., Szmyd, R., et al. (2013). Effects triggered by platinum nanoparticles on primary keratinocytes. International Journal of Nanomedicine, 8, 3963–3975.
  97. Kumari, M., Khan, S. S, Pakrashi, S., Mukherjee, A., & Chandrasekaran, N. (2011). Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. Journal of Hazardous Materials, 190, 613–621.
  98. Kumari, M., Mukherjee, A., & Chandrasekaran, N. (2009). Genotoxicity of silver nanoparticles in Allium cepa. Science of the Total Environment, 407, 5243–5246.
  99. Laban, G., Nies, L. F., Turco, R. F., Bickham, J. W., & Sepulveda, M. S. (2010). The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology, 19(1), 185–195.
  100. Lam, C., James, J. T., McCluskey, R., & Hunter R. L. (2004). Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intractracheal instillation. Toxicological Sciences, 77(1), 126–134.
  101. Landsiedel, R., Fabian, E., Ma-Hock, L., van Ravenzwaay, B., Wohlleben, W., Wiench, K., et al. (2012). Toxico-/biokinetics of nanomaterials. Archives of Toxicology, 86, 1021–1060.
  102. Leblanc, M., & Lbouabi, M. (1988). Native silver mineralization along a rodingite tectonic contact between serpentinite and quartz diorite (Bou-Azzer, Morocco). Economic Geology, 83(7), 1379–1391.
  103. Lee, S., Chung, H., Kim, S., & Lee, I. (2013). The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water, Air, & Soil Pollution, 224(11).
  104. Levard, C., Hotze, E. M., Lowry, G. V., & Brown Jr., G. E. (2012). Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environmental Science & Technology, 46, 6900–6914.
  105. Li, X., Liu, W., Sun, L., Aifantis, K. E, Yu, B., Fan, Y., et al. (2015). Effects of physicochemical properties of nanomaterials on their toxicity. Journal of Biomedical Materials Research Part A, 103, 2499–2507.
  106. Lin, D. H., & Xing, B. S. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 150, 243–250.
  107. Lin, S. J., Reppert, J., Hu, Q., Hudson, J. S., Reid, M. L., Ratnikova, T. A., et al. (2009). Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small, 5, 1128–1132.
  108. Lin, Y. C., Wu, K. T., Lin, Z. R., Perevedentseva, E., Karmenyan, A., Lin, M. D., et al. (2016). Nanodiamond for biolabelling and toxicity evaluation in the zebrafish embryo in vivo. Journal of Biophotonics, 9(8), 827–836.
  109. Lin, Z. M., Monteiro-Riviere, N. A., & Riviere, J. E. (2015). Pharmacokinetics of metallic nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 7, 189–217.
  110. Lindberg, H. K., Falck, G. C., Suhonen, S., Vippola, M., Vanhala, E., Catalán J., et al. (2009). Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicology Letters, 186(3), 166–173.
  111. Lippmann, M. (1990). Effects of fiber characteristics on lung deposition, retention, and disease. Environmental Health Perspectives, 88, 311–317 (1990).
  112. Lok, CN., Ho, CM., Chen, R., He, Q. Y., Yu, W. Y., Sun, H., et al. (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Proteome Research, 5(4): 916–924.
  113. Lovern, S. B., & Klaper, R. (2006). Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environmental Toxicology and Chemistry, 25(4): 1132–1137.
  114. Lu, R., Mao, J. W., Gao, J. J., Su, H. M., & Zheng, J. H. (2012). Geological characteristics and occurrence of silver in Xiabao Ag-Pb-Zn deposit, Lengshuikeng ore field, Jiangxi Province. East China. Acta Petrologica Sinica, 28(1), 105–121 (2012).
  115. Magaye, R., Zhao, J., Bowman, L., & Ding, M. (2012). Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles. Experimental and Therapeutic Medicine, 4, 551–561.
  116. Manusadzianas, L., Caillet, C., Fachetti, L., Gylyte, B., Grigutyte, R., Jurkoniene, S., et al. (2012). Toxicity of copper oxide nanoparticle suspensions to aquatic biota. Environmental Toxicology and Chemistry, 31(1), 108–114.
  117. Marcon, L., Riquet, F., & Szunerits, S. (2010). Cellular and in vivo toxicity of functionalized nanodiamond in Xenopus embryos. Journal of Materials Chemistry, 20, 8064–8069.
  118. Markides, H., Rotherham, M., & El Haj, A. J. (2012). Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. Journal of Nanomaterials, 614094.
  119. Melegari, S. P., Perreault, F., Costa, R. H. R., Popovic, R., & Matias, W. G. (2013). Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquatic Toxicology, 142–143(4), 431–440.
  120. Melnik, E. A., Buzulukov, Y. P., Demin, V. F., Demin, V. A., Gmoshinski, I. V., Tyshko, N. V., et al. (2013). Transfer of silver nanoparticles through the placenta and breast milk during in vivo experiments on rats. Acta Naturae, 5, 107–115.Google Scholar
  121. Mendonça, E., Diniz, M., Silva, L., Peres, I., Castro, L., Correia, J. B., et al. (2011). Effects of diamond nanoparticle exposure on the internal structure and reproduction of Daphnia magna. Journal of Hazardous Materials, 186(1), 265–271.
  122. Mittal, S., & Pandey, A. K. (2014). Cerium oxide nanoparticles induced toxicity in human lung cells: Role of ROS mediated DNA damage and apoptosis. Biomedical Research International, 891934.
  123. Mukherjee, A., Peralta-Videa, J. R., Bandyopadhyay, S., Rico, C. M., Zhao, L., & Gardea-Torresdey, J. L. (2014). Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics, 6, 132–138.
  124. Munk, M., Brandao, H. M., Nowak, S., Mouton, L., Gern, J. C., Guimaraes, A.S., et al. (2015). Direct and indirect toxic effects of cotton-derived cellulose nanofibres on filamentous green algae. Ecotoxicology and Environmental Safety, 122, 399–405.
  125. Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., et al. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17(5), 372–386.
  126. Nemmar, A., Beegam, S., Yuvaraju, P., Yasin, J., Tariq, S., Attoub, S., et al. (2016). Ultrasmall superparamagnetic iron oxide nanoparticles acutely promote thrombosis and cardiac oxidative stress and DNA damage in mice. Particle and Fibre Toxicology, 13, 22.
  127. Nogueira, P. F., Nakabayashi, D., & Zucolotto, V. (2015). The effects of graphene oxide on green algae Raphidocelis subcapitata. Aquatic Toxicology, 166, 29–35.
  128. Ojea-Jimenez, I., Garcia-Fernandez, L., Lorenzo, J., & Puntes, V. F. (2012). Facile preparation of cationic gold nanoparticle-bioconjugates for cell penetration and nuclear targeting. ACS Nano, 6, 7692–7702.
  129. Osbaldeston, T. A., & Wood, R. P. A. (2000). Dioscorides De Materia Medica: Being an Herbal with Many Other Medicinal Materials Written in Greek in the First Century of the Common Era; a New Indexed Version in Modern English, pp. 2–11. Johannesburg: IBIDIS.Google Scholar
  130. Ouyang, S., Hu, X., & Zhou, Q. (2015). Envelopment–Internalization Synergistic Effects and Metabolic Mechanisms of Graphene Oxide on Single-Cell Chlorella vulgaris are Dependent on the Nanomaterial Particle Size. ACS Applied Materials & Interfaces, 7, 18104–18112.
  131. Oyabu, T., Ogami, A., Morimoto, Y., Shimada M., Lenggoro, W., Okuyama, K., et al. (2007). Biopersistence of inhaled nickel oxide nanoparticles in rat lung. Inhalation Toxicology, 19 (Suppl 1), 55–58.
  132. Pakrashi, S., Jain, N., Dalai, S., Jayakumar, J., Chandrasekaran, P., Ashok, M., et al. (2014). In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. PLoS One, 9, 12.
  133. Park, K. H., Chhowalla, M., Iqbal, Z., & Sesti, F. (2003). Single-walled carbon nanotubes are a new class of ion channel blockers. Journal of Biological Chemistry, 278, 50212–50216.
  134. Petersen, E. J, Henry, T. B., Zhao, J., MacCuspie, R. I., Kirschling, T. L., Dobrovolskaia, M. A., et al. (2014). Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environmental Science Technology, 48, 4226–4246.
  135. Podila, R., & Brown, J. M. (2013). Toxicity of engineered nanomaterials: A physicochemical perspective. Journal of Biochemical and Molecular Toxicology, 27, 50–55.
  136. Pokhrel, L. R., & Dubey, B. (2013). Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Science of the Total Environment, 452, 321–332.
  137. Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A., Seaton, A., et al. (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology, 3, 423–428.
  138. Pretti, C., Oliva, M., Pietro, R. D., Monni, G., Cevasco, G., Chiellini, F., et al. (2014). Ecotoxicity of pristine graphene to marine organisms. Ecotoxicology and Environmental Safety, 101, 138–145.
  139. Rahman, M. F., Wang, J., Patterson, T. A., Saini, U. T., Robinson, B. L., Newport, G. D., et al. (2009). Expression of genes related to oxidative stress in the mouse brain after exposure to silver nanoparticles. Toxicology Letters, 187, 15–21.
  140. Rico, C. M., Barrios, A. C., Tan, W., Rubenecia, R., Lee, S. C., Varela-Ramirez, A., et al. (2015). Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environmental Science and Pollution Research, 22, 10551–10558.
  141. Rico, C. M., Lee, S. C., Rubenecia, R.,Mukherjee, A.,Hong, J., Peralta-Videa, J. R., et al. (2014). Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). Journal of Agricultural and Food Chemistry, 62, 9669–9675.
  142. Rico, C. M., Morales, M. I., Barrios, A. C., McCreary, R., Hong, J., & Lee, W. Y., et al. (2013). Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. Journal of Agricultural and Food Chemistry, 61, 11278–11285.
  143. Roberts, A. P., Mount, A. S., Seda, B., Souther, J., Qiao, R., Lin, S., et al. (2007). In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna. Environmental Science Technology, 41(8), 3025–3029.
  144. Roiter, Y., Ornatska, M., Rammohan, A. R., Balakrishnan, J., Heine, D. R., & Minko, S. (2009). Interaction of lipid membrane with nanostructured surfaces. Langmuir, 25, 6287–6299.
  145. Roncati, L., Gatti, A. M., Capitani, F., Barbolini, G., Maiorana, A., & Palmieri, B. (2015a). Heavy metal bioaccumulation in an atypical primitive neuroectodermal tumor of the abdominal wall. Ultrastructural Pathology, 39, 286–292.
  146. Roncati, L., Gatti, A. M., Pusiol, T., Barbolini, G., Maiorana, A., & Montanari, S. (2015b). ESEM detection of foreign metallic particles inside ameloblastomatous cells. Ultrastructural Pathology, 39, 329–335.
  147. Sabo-Attwood, T., Unrine, J. M., Stone, J. W., Murphy, C. J., Ghoshroy, S., Blom, D., et al. (2012). Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology, 6, 353–360 (2012).
  148. Salatin, S., Dizaj, S. M., & Khosroushahi, A. Y. (2015). Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biology International, 39, 881–890.
  149. Sarhan, O. M. M., & Hussein, R. M. (2014). Effects of intraperitoneally injected silver nanoparticles on histological structures and blood parameters in the albino rat. International Journal of Nanomedicine, 9, 1505–1517.
  150. Saunders, J. A., Unger, D. L., Kamenov, G. D., Fayek, M., Hames, W. E., & Utterback, W. C. (2008). Genesis of middle miocene yellowstone hotspot-related bonanza epithermal Au-Ag deposits, Northern Great Basin, USA. Mineralium Deposita, 43(7), 715–734.
  151. Savi, M., Rossi, S., Bocchi, L., Gennaccaro, L., Cacciani, F., Perotti, A., et al. (2014). Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue. Particle Fibre and Toxicology, 11, 63.
  152. Schlinkert, P., Casals, E., Boyles, M., Tischler, U., Hornig, E., Tran, N., et al. (2015). The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. Journal of Nanobiotechnology, 13(1).
  153. Scott-Fordsmand, J. J., Pozzi-Mucelli, S., Tran, L., Aschberger, K., Sabella, S., Vogel, U., et al. (2014). A unified framework for nanosafety is needed. Nano Today, 9(5), 546–549.
  154. Semmler-Behnke, M., Lipka, J., Wenk, A., Hirn, S., Schäffler, M., Tian, F., et al. (2015). Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat. Particle and Fibre Toxicology, 11, 33.
  155. Servin, A. D., Morales, M. I., Castillo-Michel, H., Hernandez-Viezcas, J. A., Munoz, B., Zhao, L., et al. (2013). Synchrotron verification of TiO accumulation in cucumber fruit: A possible way of TiO2 nanoparticle transfer from soil into the food chain. Environmental Science & Technology, 47, 11592–11598.
  156. Sevcu, A., El-Temsah, Y. S., Joner, E. J., Cernik, M. (2011). Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes and Environments, 26(4), 271–281.
  157. Shaymurat, T., Gu, J. X., Xu, C. S., Yang, Z., Zhao, Q., Liu, Y., et al. (2012). Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): A morphological study. Nanotoxicology, 6, 241–248.
  158. Shen, C. X., Zhang, Q. F., Li, J. A., Bi, F. C., Yao, N. (2010). Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. American Journal of Botany, 97, 1602–1609.
  159. Shoults-Wilson, W. A., Reinsch, B. C., Tsyusko, O. V., Bertsch, P. M., Lowry, G. V., & Unrine, J. M. (2011). Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Science Society of America Journal, 75(2), 365–377.
  160. Sighinolfi, G. L., Artoni, E., Gatti, A. M., Corsi, L. (2016). Carcinogenic potential of metal nanoparticles in BALB/3T3 cell transformation assay. Environmental Toxicology, 31, 509–519 (2016).
  161. Silva, R. M., Anderson, D. S., Franzi, L. M., Peake, J. L., Edwards, P. C., Van Winkle, L. S., et al. (2015). Pulmonary effects of silver nanoparticle size, coating, and dose over time upon intratracheal instillation. Toxicological Sciences, 144, 151–162 (2015).
  162. Silva, T., Pokhrel, L. R., Dubey, B., Tolaymat, T. M., Maier, K. J., & Liu, X. (2014). Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: Comparison between general linear model-predicted and observed toxicity. Science of the Total Environment, 468–469, 968–976.
  163. Simon-Deckers, A., Loo, S., Mayne-L’hermite, M., Herlin-Boime, N., Menguy, N., Reynaud, C., et al. (2009). Size-composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environmental Science & Technology, 43, 8423–8429.
  164. Simonsen, L. O., Harbak, H., & Bennekou, P. (2012). Cobalt metabolism and toxicology—a brief update. Science of the Total Environment, 432, 210–215.
  165. Snyder, R. W., Fennell, T. R., Wingard, C. J., Mortensen, N. P., Holland, N. A., Shannahan, J. H., et al. (2015). Distribution and biomarker of carbon-14 labeled fullerene C-60 (C-14(U) C-60) in pregnant and lactating rats and their offspring after maternal intravenous exposure. Journal of Applied Toxicology, 35, 1438–1451.
  166. Sohn, E. K., Chung, Y. S., Johari, S. A., Kim, T. G., Kim, J. K., Lee, J. H., et al. (2015). Acute toxicity comparison of single-walled carbon nanotubes in various freshwater organisms. Biomed Research Internatinal, 2015, 1–7.
  167. Sonavane, G., Tomoda, K., & Makino, K. (2008). Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloidal and Surfaces B: Biointerfaces, 66, 274–280.
  168. Song, H., Wang, G., He, B., Li, L., Li, C., Lai, Y., et al. (2012). Cationic lipid-coated PEI/DNA polyplexes with improved efficiency and reduced cytotoxicity for gene delivery into mesenchymal stem cells. International Journal of Nanomedicine, 7, 4637–4648.
  169. Soto, K., Garza, K. M., & Murr, L. E. (2007). Cytotoxic effects of aggregated nanomaterials. Acta Biomaterialia, 3, 351–358.
  170. Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43, 9473–9479.
  171. Stewart, M. E., Anderton, C. R., Thompson, L. B., Maria. J., Gray, S. K., Rogers, J. A, et al. (2008). Nanostructured plasmonic sensors. Chemical Reviews, 108, 494–521.
  172. Suman, T. Y., Radhika Rajasree, S. R., & Kirubagaran, R. (2015). Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicology and Environmental Safety, 113, 23–30.
  173. Sun, J., Wang, S. C., Zhao, D., Hun, F. H., Weng, L., & Liu, H. (2011). Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells. Cell Biology and Toxicoogy, 27(5), 333–342.
  174. Sung, J. H., Ji, J. H., Yun, J. U., Kim, D. S., Song, M. Y., Jeong, J., et al. (2008). Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhalation Toxicology, 20, 567–74.
  175. Sutherland, W. J., Clout, M., Côté, I. M., Daszak, P., Depledge, M. H., Fellman, L., et al. (2010). A horizon scan of global conservation issues for 2010.Trends in Ecology & Evolution, 25(1), 1–7.
  176. Takenaka, S., Karg, E., Roth, C., Schulz, H., Ziesenis, A., Heinzmann, U., et al. (2001). Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environmental Health Perspectives, 4, 547–551.
  177. Talkar, S., Dhoble, S., Majumdar, A., & Patravale, V. (2018). Transmucosal nanoparticles: Toxicological overview. Cellular and Molecular Toxicology of Nanoparticles, Advances in Experimental Medicine and Biology, 1048, 37–57.
  178. Tao, X., Li, C., Zhang, B., & He, Y. (2016). Effects of aqueous stable fullerene nanocrystals (nC60) on the food conversion from Daphnia magna to Danio rerio in a simplified freshwater food chain. Chemosphere, 145, 157–162.
  179. Templeton, R. C., Ferguson, P. L., Washburn, K. M., Scrivens, W. A., & Chandler, G. T. (2006). Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod. Environmental Science & Technology, 40, 7387–7393.
  180. Teske, S. S., & Detweiler, C. S. (2015). The biomechanisms of metal and metal-oxide nanoparticles interactions with cells. International Journal of Environmental Research and Public Health, 12, 1112–1134.
  181. Thuesombat, P., Hannongbua, S., Akasit, S., & Chadchawan, S. (2014). Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicology and Environmental Safety, 104, 302–309.
  182. Trickler, W. J., Lantz, S. M., Murdock, R. C., Schrand, A. M., Robinson, B. L., Newport, G. D., et al. (2010). Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicological Science, 118, 160–170.
  183. Tripathi, D. K., Singh, S., Singh, S., Pandey, R., Singh, V. P., Sharma, N. C., et al. (2017). An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry, 110, 2–12.
  184. Tuominen, M., Schultz, E., & Sillanpaa, M. (2013). Toxicity and stability of silver nanoparticles to the green alga. Pseudokirchneriella subcapitata in boreal freshwater samples and growth media. Nanomaterials and Environment, 1, 48–57.
  185. Vo-Dinh, T. (2007). Nanotechnology in biology and medicine: Methods, devices, and applications. In T. Vo-Dinh (Ed.). Boca Raton, FL: CRC Press. ISBN-13: 978-0849329494.Google Scholar
  186. Wang, Q., Ebbs, S. D., Chen, Y. S., & Ma, X. (2013). Trans-generational impact of cerium oxide nanoparticles on tomato plants. Metallomics, 5, 753–759.
  187. Wen, H., Dan, M., Yang, Y., Lyu, J., Shao, A., Cheng, X., et al. (2017). Acute toxicity and genotoxicity of silver nanoparticle in rats. PLoS One, 12, e0185554.
  188. Wick, P., Manser, P., Limbach, L., Dettlaff-Weglikowska, U., Krumeich, F., Roth, S., et al. (2007). The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicology Letters, 168, 121–131.
  189. Wisniak, J. (2004). Dyes from antiquity to synthesis. Indian Journal of History of Science, 39(1), 75–100.Google Scholar
  190. Wu, Y., Zhou, Q., Li, H., Liu, W., Wang, T., & Jiang, G. (2010). Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquatic Toxicology, 100(2), 160–167.
  191. Xiang, L., Zhao, H. M., Li, Y. W., Huang, X. P., Wu, X. L., Zhai, T., Yuan, Y., et al. (2015). Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environmental Science and Pollution Research, 22, 10452–10462.
  192. Xiao, X., Montaño, G. A., Edwards, T. L., Allen, A., Achyuthan, K. E., Polsky, R., et al. (2012). Surface charge dependent nanoparticle disruption and deposition of lipid bilayer assemblies. Langmuir, 28, 17396–403.
  193. Yadav, T., Mungray, A. A., & Mungray, A. K. (2014). Fabricated nanoparticles: current status and potential phytotoxic threats. In: D. M. Whitacre (Ed.), Reviews of environmental contamination and toxicology, Vol. 230. Springer, ISBN 978-3-319-04411-8.Google Scholar
  194. Yang, L., & Watts, D. J. (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicology Letters, 158(2), 122–132.
  195. Yin, L., Cheng, Y., Espinasse, B., Colman, B. P., Auffan, M., Wiesner, M., et al. (2011). More than the ions: The effects of silver nanoparticles on Lolium multiflorum. Environmental Science & Technology, 45(6), 2360–2367.
  196. Yoon, S. J., Kwak, J. I., Lee, W. M., Holden, P. A., & An, Y. J. (2014). Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. Ecotoxicology and Environmental Safety, 100, 131–137.
  197. Yu, S. J., Yin, Y. G., & Liu, J. F. (2013). Silver nanoparticles in the environment. Environmental Science: Processes & Impacts, 15(1), 78–92.
  198. Yu, X. H., Hong, F. S., & Zhang, Y. Q. (2016). Bio-effect of nanoparticles in the cardiovascular system. Journal of Biomedical Materials Research Part A, 104, 2881–2897.
  199. Zhang, Y., Ferguson, S. A., Watanabe, F., Jones, Y., Xu, Y., Biris, A. S., et al. (2013). Silver nanoparticles decrease body weight and locomotor activity in adult male rats. Small, 9(9–10), 1715–1720.
  200. Zhao, L. J., Peralta-Videa, J. R., Rico, C. M., Hernandez-Viezcas, J. A., Sun, Y., Niu, G., et al. (2014). CeO and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). Journal of Agriculture and Food Chemistry, 62, 2752–2759.
  201. Zhao, L. J., Sun, Y. P., Hernandez-Viezcas, J. A., Hong, J., Majumdar, S., Niu, G., et al. (2015). Monitoring the environmental effects of CeO and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ mu-XRF mapping of nutrients in kernels. Environmental Science & Technology, 49, 2921–2928.
  202. Zhu, L., Chang, D. W., Dai, L., & Hong, Y. (2007). DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Letters, 7, 3592–3597.
  203. Zhu, S., Oberdörster, E., & Haasch, M. L. (2006). Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Marine Environmental Research, 62(1), S5–S9.
  204. Zuverza-Mena, N., Martínez-Fernández, D., Du, W., Hernandez-Viezcas, J. A., Bonilla-Bird, N., López-Moreno, M. L., et al. (2017). Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses—A review. Plant Physiology and Biochemistry, 110, 236–264.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • V. Ananthi
    • 1
    • 2
    • 3
  • K. Mohanrasu
    • 1
    • 2
  • T. Boobalan
    • 2
  • K. Anand
    • 4
  • M. Sudhakar
    • 6
    • 7
  • Anil Chuturgoon
    • 5
  • V. Balasubramanian
    • 2
  • R. Yuvakkumar
    • 8
  • A. Arun
    • 2
    Email author
  1. 1.Department of Energy ScienceAlagappa UniversityKaraikudiIndia
  2. 2.Department of MicrobiologyAlagappa UniversityKaraikudiIndia
  3. 3.Department of MicrobiologyPRIST University, Madurai CampusMaduraiIndia
  4. 4.Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory ServiceUniversity of the Free StateBloemfonteinSouth Africa
  5. 5.Discipline of Medical Biochemistry, School of Laboratory of Medicine and Medical Sciences, College of Health ScienceUniversity of KwaZulu-NatalDurbanSouth Africa
  6. 6.Polymers and Composites, Materials Science and Manufacturing UnitCouncil for Scientific and Industrial Research (CSIR)Port ElizabethSouth Africa
  7. 7.Department of Chemistry, Faculty of ScienceNelson Mandela UniversityPort ElizabethSouth Africa
  8. 8.Nano Materials Laboratory, Department of PhysicsAlagappa UniversityKaraikudiIndia

Personalised recommendations