Advertisement

Nanomedicines in Cancer Therapy

  • Enas Abu-Qudais
  • Balakumar ChandrasekaranEmail author
  • Sara Samarneh
  • Ghadir Kassab
Chapter
  • 48 Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Cancer is one of the most controversial diseases known for humanity and emerged as a global health problem all the time. The drug discovery scientists and clinicians have attempted to cure cancer since centuries. Conventional cancer treatments such as radiotherapy and chemotherapy have many limitations including low specificity, lack of stability, rapid drug clearance, biodegradation and limited targeting besides number of side effects associated with these treatments on the actual patients. Nanomedicine has evolved over the past few years and became a breakthrough technology for the diagnosis and the treatment of several cancer types. Specifically, the drug is being carried out through carriers called nanoparticles in which the properties of these carriers are very important for the successful treatment of deadly diseases like cancer. In this chapter, we describe the application of nanotechnology and nanomedicines in the diagnosis and treatment of cancer. Further, we discuss the targeted-nanodrug delivery to cancer cells in a broad context. Moreover, we provide a glimpse on marketed nanomedicines available for the management of cancer.

Keywords

Nanodrug delivery Nanomedicine Brain cancer Breast cancer Lung cancer Nanoparticles 

List of Abbreviations

ABC

ATP-binding cassette

AuNPs

Gold nanoparticles

BBB

Blood brain barrier

Bcl-XL

B-cell lymphoma protein extra-large

BCNU

Bis-chloroethylnitrosourea

BTC

Brain tumor–cell barrier

BTSCs

Brain tumor stem cells

CED

Convection-enhanced delivery

EPR

Enhanced permeability and retention effect

FDA

Food and drug administration

GI

Gastrointestinal

HER2+

Human epidermal receptor 2

HSV

Herpes simplex virus

IR

Infrared

IV

Intravenous

LH

Lutenizing hormone

mAbs

Monoclonal antibodies

MDR

Multi drug resistance

MMP

Matrix metalloproteinase

MMR

Mismatch repair

MPS

Macrophage phagocytic system

MM

Multiple myeloma

NP

Nanoparticle

PBAEs

Poly(β-amino esters)

PDT

Photo dynamic therapy

PEG

Poly ethylene glycol

PSM

Prostate specific membrane

P-gp

P-glycoprotein

PLGA

Poly-(lactic acid-coglycolic acid)

PSA

Prostate-specific antigen

PTT

Photothermal therapy

PTX

Paclitaxel

TAMS

Tumor-associated macrophages

TME

Tumor microenvironment

TNBC

Triple-negative breast cancer

TRAIL

TNF-related apoptosis inducing ligand

WHO

World health organization

Notes

Acknowledgements

Authors wish to thank Dr. Yazan Al-Bataineh (The Dean), Prof. Abdul Muttaleb Jaber, Prof. Mutaz Sheikh Salem (The President) and Prof. Marwan Kamal (University Counsellor) of Philadelphia University, Jordan for the constant support, motivation and research funding to BC (467/34/100 PU).

References

  1. Abdulkareem, I., & Zurmi, I. (2012). Review of hormonal treatment of breast cancer. Nigerian Journal of Clinical Practice, 15, 9–14.  https://doi.org/10.4103/1119-3077.94088.CrossRefGoogle Scholar
  2. Agarwal, S., Sane, R., Oberoi, R., et al. (2011). Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Reviews in Molecular Medicine, 13, 1–27.  https://doi.org/10.1017/S1462399411001888.CrossRefGoogle Scholar
  3. Agemy, L., Friedmann-Morvinski, D., Kotamraju, V. R., et al. (2011). Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proceedings of National Academy of Sciences, 108, 17450–17455.  https://doi.org/10.1073/pnas.1114518108.CrossRefGoogle Scholar
  4. Akilo, O. D., Choonara, Y. E., Strydom, A. M., et al. (2016). AN in vitro evaluation of a carmustine-loaded Nano-co-Plex for potential magnetic-targeted intranasal delivery to the brain. International Journal of Pharmaceutics, 500, 196–209.  https://doi.org/10.1016/j.ijpharm.2016.01.043.CrossRefGoogle Scholar
  5. Amer, M. H. (2014). Gene therapy for cancer: present status and future perspective. Molecular and Cellular Therapies, 2, 1–19.  https://doi.org/10.1186/2052-8426-2-27.CrossRefGoogle Scholar
  6. Anselmo, A. C., & Mitragotri, S. (2016). Nanoparticles in the clinic. Bioengineering Translational Medicine, 1, 10–29.  https://doi.org/10.1002/btm2.10003.CrossRefGoogle Scholar
  7. Arnida, M. A., & Ghandehari, H. (2010). Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: A comparative study of rods and spheres. Journal of Applied Toxicology, 30, 212–217.  https://doi.org/10.1002/jat.1486.CrossRefGoogle Scholar
  8. Arranja, A. G., Pathak, V., Lammers, T., & Shi, Y. (2017). Tumor-targeted nanomedicines for cancer theranostics. Pharmacological Research, 115, 87–95.  https://doi.org/10.1016/j.phrs.2016.11.014.CrossRefGoogle Scholar
  9. Arruebo, M., Vilaboa, N., Sáez-Gutierrez, B., et al. (2011). Assessment of the evolution of cancer treatment therapies. Cancers (Basel)., 3, 3279–3330.  https://doi.org/10.3390/cancers3033279.CrossRefGoogle Scholar
  10. Blagosklonny, M. V. (2003). Targeting cancer cells by exploiting their resistance. Trends in Molecular Medicine, 9, 307–312.  https://doi.org/10.1016/S1471-4914(03)00111-4.CrossRefGoogle Scholar
  11. Bobo, D., Robinson, K. J., Islam, J., et al. (2016). Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharmaceutical Research, 33, 2373–2387.  https://doi.org/10.1007/s11095-016-1958-5.CrossRefGoogle Scholar
  12. Bourzac, K. (2016). News feature: Cancer nanomedicine, reengineered. Proceedings of National Academy of Sciences, 113, 12600–12603.  https://doi.org/10.1073/pnas.1616895113.CrossRefGoogle Scholar
  13. Brown, J. S., Sundar, R., & Lopez, J. (2018). Combining DNA damaging therapeutics with immunotherapy: More haste, less speed. British Journal of Cancer, 118, 312–324.  https://doi.org/10.1038/bjc.2017.376.CrossRefGoogle Scholar
  14. Cai, W., Gao, T., Hong, H., & Sun, J. (2008). Applications of gold nanoparticles in cancer nanotechnology. Nanotechnology, Science and Applications, 1, 17–32.  https://doi.org/10.2147/NSA.S3788.CrossRefGoogle Scholar
  15. Chames, P., Van Regenmortel, M., Weiss, E., & Baty, D. (2009). Therapeutic antibodies: Successes, limitations and hopes for the future. British Journal of Pharmacology, 157, 220–233.  https://doi.org/10.1111/j.1476-5381.2009.00190.x.CrossRefGoogle Scholar
  16. Chang, T. C., Shiah, H. S., Yang, C. H., et al. (2015). Phase I study of nanoliposomal irinotecan (PEP02) in advanced solid tumor patients. Cancer Chemotherapy and Pharmacology, 75, 579–586.  https://doi.org/10.1007/s00280-014-2671-x.CrossRefGoogle Scholar
  17. Cullis, J., Siolas, D., Avanzi, A., et al. (2017). Macropinocytosis of nab-paclitaxel drives macrophage activation in pancreatic cancer. Cancer Immunology Research, 5, 182–190.  https://doi.org/10.1158/2326-6066.CIR-16-0125.CrossRefGoogle Scholar
  18. Danhier, F., Feron, O., & Préat, V. (2010). To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release, 148, 135–146.  https://doi.org/10.1016/j.jconrel.2010.08.027.CrossRefGoogle Scholar
  19. Das, S. K., Menezes, M. E., Bhatia, S., et al. (2015). Gene therapies for cancer: Strategies, challenges and successes. Journal of Cellular Physiology, 230, 259–271.  https://doi.org/10.1002/jcp.24791.CrossRefGoogle Scholar
  20. David, A. (2017). Peptide ligand-modified nanomedicines for targeting cells at the tumor microenvironment. Advanced Drug Delivery Reviews, 119, 120–142.  https://doi.org/10.1016/j.addr.2017.05.006.CrossRefGoogle Scholar
  21. Elizondo, E., Moreno, E., Cabrera, I., et al. (2011). Liposomes and other vesicular systems: Structural characteristics, methods of preparation, and use in nanomedicine. Progress in Molecular Biology and Translational Science, 104, 1–52.  https://doi.org/10.1016/B978-0-12-416020-0.00001-2.CrossRefGoogle Scholar
  22. Elzoghby, A. O., Samy, W. M., & Elgindy, N. A. (2012). Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of Controlled Release, 157, 168–182.  https://doi.org/10.1016/j.jconrel.2011.07.031.CrossRefGoogle Scholar
  23. Ernsting, M. J., Murakami, M., Undzys, E., et al. (2012). A docetaxel-carboxymethylcellulose nanoparticle outperforms the approved taxane nanoformulation, Abraxane, in mouse tumor models with significant control of metastases. Journal of Controlled Release, 162, 575–581.  https://doi.org/10.1016/j.jconrel.2012.07.043.CrossRefGoogle Scholar
  24. Falzone, L., Salomone, S., & Libra, M. (2018). Evolution of cancer pharmacological treatments at the turn of the third millennium. Frontiers in Pharmacology, 9, 1–26.  https://doi.org/10.3389/fphar.2018.01300.CrossRefGoogle Scholar
  25. Farokhzad, O. C., Cheng, J., Teply, B. A., et al. (2006). Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proceedings of National Academy of Sciences, 103, 6315–6320.  https://doi.org/10.1073/pnas.0601755103.CrossRefGoogle Scholar
  26. Firdhouse, M. J., & Lalitha, P. (2013). Biosynthesis of silver nanoparticles using the extract of Alternanthera sessilis-antiproliferative effect against prostate cancer cells. Cancer Nanotechnology, 4, 137–143.  https://doi.org/10.1007/s12645-013-0045-4.CrossRefGoogle Scholar
  27. Frenkel, V. (2008). Ultrasound mediated delivery of drugs and genes to solid tumors. Advanced Drug Delivery Reviews, 60, 1193–1208.  https://doi.org/10.1016/j.addr.2008.03.007.CrossRefGoogle Scholar
  28. Gardikis, K., Hatziantoniou, S., Signorelli, M., et al. (2010). Thermodynamic and structural characterization of Liposomal-Locked in-Dendrimers as drug carriers. Colloids Surfaces B Biointerfaces, 81, 11–19.  https://doi.org/10.1016/j.colsurfb.2010.06.010.CrossRefGoogle Scholar
  29. Gelperina, S., Kisich, K., Iseman, M. D., & Heifets, L. (2005). The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. American Journal of Respiratory and Critical Care Medicine, 172, 1487–1490.  https://doi.org/10.1164/rccm.200504-613PP.CrossRefGoogle Scholar
  30. Gianni, L., Pienkowski, T., Im, Y.-H., et al. (2016). 5-year analysis of neoadjuvant pertuzumab and trastuzumab in patients with locally advanced, inflammatory, or early-stage HER2-positive breast cancer (NeoSphere): A multicentre, open-label, phase 2 randomised trial. The lancet Oncology, 17, 791–800.  https://doi.org/10.1016/S1470-2045(16)00163-7.CrossRefGoogle Scholar
  31. Gulati, K., Aw, M. S., & Losic, D. (2012). Nanoengineered drug-releasing Ti wires as an alternative for local delivery of chemotherapeutics in the brain. International Journal of Nanomedicine, 7, 2069–2076.  https://doi.org/10.2147/IJN.S29917.CrossRefGoogle Scholar
  32. Gustafson, H. H., Holt-Casper, D., Grainger, D. W., & Ghandehari, H. (2015). Nanoparticle uptake: The phagocyte problem. Nano Today, 10, 487–510.  https://doi.org/10.1016/j.nantod.2015.06.006.CrossRefGoogle Scholar
  33. Hassanpour, S. H., & Dehghani, M. (2017). Review of cancer from perspective of molecular. Journal of Cancer Research and Practice, 4, 127–129.  https://doi.org/10.1016/j.jcrpr.2017.07.001.CrossRefGoogle Scholar
  34. Housman, G., Byler, S., Heerboth, S., et al. (2014). Drug resistance in cancer: An overview. Cancers (Basel), 6, 1769–1792.  https://doi.org/10.3390/cancers6031769.CrossRefGoogle Scholar
  35. Jaganathan, H., & Godin, B. (2012). Biocompatibility assessment of Si-based nano- and micro-particles. Advanced Drug Delivery Reviews, 64, 1800–1819.  https://doi.org/10.1016/j.addr.2012.05.008.CrossRefGoogle Scholar
  36. Jantscheff, P., Esser, N., Graeser, R., et al. (2009). Liposomal gemcitabine (GemLip)—efficient drug against hormone-refractory Du145 and PC-3 prostate cancer xenografts. Prostate, 69, 1151–1163.  https://doi.org/10.1002/pros.20964.CrossRefGoogle Scholar
  37. Jiang, X., Xin, H., Ren, Q., et al. (2014). Nanoparticles of 2-deoxy-d-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials, 35, 518–529.  https://doi.org/10.1016/j.biomaterials.2013.09.094.CrossRefGoogle Scholar
  38. Kolishetti, N., Dhar, S., Valencia, P. M., et al. (2010). Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proceedings of National Academy of Sciences, 107, 17939–17944.  https://doi.org/10.1073/pnas.1011368107.CrossRefGoogle Scholar
  39. Kroon, J., Metselaar, J. M., Storm, G., & van der Pluijm, G. (2014). Liposomal nanomedicines in the treatment of prostate cancer. Cancer Treatment Reviews, 40, 578–584.  https://doi.org/10.1016/j.ctrv.2013.10.005.CrossRefGoogle Scholar
  40. Kumar, S. R. P., Markusic, D. M., Biswas, M., et al. (2016). Clinical development of gene therapy: Results and lessons from recent successes. Therapy-Methods & Clinical Development, 3, 1–11.  https://doi.org/10.1038/mtm.2016.34.CrossRefGoogle Scholar
  41. Leece, R., Xu, J., Ostrom, Q. T., et al. (2017). Global incidence of malignant brain and other central nervous system tumors by histology, 2003–2007. Neuro Oncology, 19, 1553–1564.  https://doi.org/10.1093/neuonc/nox091.CrossRefGoogle Scholar
  42. Li, H.-F., Wu, C., Xia, M., et al. (2015). Targeted and controlled drug delivery using a temperature and ultra-violet responsive liposome with excellent breast cancer suppressing ability. RSC Advances, 5, 27630–27639.  https://doi.org/10.1039/C5RA01553G.CrossRefGoogle Scholar
  43. Li, H., Jin, H., Wan, W., et al. (2018). Cancer nanomedicine: mechanisms, obstacles and strategies. Nanomedicine, 23, 1639–1656.  https://doi.org/10.2217/nnm-2018-0007.CrossRefGoogle Scholar
  44. Lin, S. H., & Kleinberg, L. R. (2008). Carmustine wafers: Localized delivery of chemotherapeutic agents in CNS malignancies. Expert Review of Anticancer Therapy, 8, 343–359.  https://doi.org/10.1586/14737140.8.3.343.CrossRefGoogle Scholar
  45. Liu, L., Ghaemi, A., Gekle, S., & Agarwal, S. (2016). One-component dual actuation: Poly(NIPAM) can actuate to stable 3D forms with reversible size change. Advanced Materials, 28, 9792–9796.  https://doi.org/10.1002/adma.201603677.CrossRefGoogle Scholar
  46. Liu, P., Wang, Z., Brown, S., et al. (2014). Liposome encapsulated Disulfiram inhibits NFκB pathway and targets breast cancer stem cells in vitro and in vivo. Oncotarget, 5, 7471–7485.  https://doi.org/10.18632/oncotarget.2166.CrossRefGoogle Scholar
  47. Luqmani, Y. A. (2005). Mechanisms of drug resistance in cancer chemotherapy. Medical Principles and Practice, 14, 35–48.  https://doi.org/10.1159/000086183.CrossRefGoogle Scholar
  48. Mahmoudi, M., Lynch, I., Ejtehadi, M. R., et al. (2011). Protein − nanoparticle interactions: Opportunities and challenges. Chemical Reviews, 111, 5610–5637.  https://doi.org/10.1021/cr100440g.CrossRefGoogle Scholar
  49. Marquette, C., & Nabell, L. (2012). Chemotherapy-resistant metastatic breast cancer. Current Treatment Options in Oncology, 13, 263–275.  https://doi.org/10.1007/s11864-012-0184-6.CrossRefGoogle Scholar
  50. Meyers, J. D., Doane, T., Burda, C., & Basilion, J. P. (2013). Nanoparticles for imaging and treating brain cancer. Nanomedicine (Lond), 8, 123–143.  https://doi.org/10.2217/nnm.12.185.CrossRefGoogle Scholar
  51. Mody, V. V., Siwale, R., Singh, A., & Mody, H. R. (2010). Introduction to metallic nanoparticles. Journal of Pharmacy and Bioallied Sciences, 2, 282–289.  https://doi.org/10.4103/0975-7406.72127.CrossRefGoogle Scholar
  52. Montanari, M., Fabbri, F., Rondini, E., et al. (2012). Phase II trial of non-pegylated liposomal doxorubicin and low-dose prednisone in second-line chemotherapy for hormone-refractory prostate cancer. Tumori Journal, 98, 696–701.  https://doi.org/10.1700/1217.13491.CrossRefGoogle Scholar
  53. Mross K, Kratz F (2011) Limits of conventional cancer chemotherapy. In Drug delivery in oncology: From basic research to cancer therapy (vol. 1, pp. 1–31).  https://doi.org/10.1002/9783527634057.ch1
  54. Muntimadugu, E., Kumar, R., Saladi, S., et al. (2016). CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surfaces B Biointerfaces, 143, 532–546.  https://doi.org/10.1016/j.colsurfb.2016.03.075.CrossRefGoogle Scholar
  55. Mylonakis, N., Athanasiou, A., Ziras, N., et al. (2010). Phase II study of liposomal cisplatin (LipoplatinTM) plus gemcitabine versus cisplatin plus gemcitabine as first line treatment in inoperable (stage IIIB/IV) non-small cell lung cancer. Lung Cancer, 68, 240–247.  https://doi.org/10.1016/j.lungcan.2009.06.017.CrossRefGoogle Scholar
  56. Nabipour, I., & Assadi, M. (2015). Converging technologies: Shaping the future of medicine. Iranian South Medical Journal, 17, 1045–1067. http://ismj.bpums.ac.ir/article-1-623-en.html
  57. Nance, E., Zhang, C., Shih, T.-Y., et al. (2014). Brain-penetrating nanoparticles improve paclitaxel efficacy in malignant glioma following local administration. ACS Nano, 8, 10655–10664.  https://doi.org/10.1021/nn504210g.CrossRefGoogle Scholar
  58. Noy, R., & Pollard, J. W. (2014). Tumor-Associated macrophages: From mechanisms to therapy. Immunity, 41, 49–61.  https://doi.org/10.1016/j.immuni.2014.06.010.CrossRefGoogle Scholar
  59. Oiseth, S. J., & Aziz, M. S. (2017). Cancer immunotherapy: A brief review of the history, possibilities, and challenges ahead. Journal Cancer Metastasis and Treatment, 3, 250–261.  https://doi.org/10.20517/2394-4722.2017.41.CrossRefGoogle Scholar
  60. Otsuka, H., Nagasaki, Y., & Kataoka, K. (2012). PEGylated nanoparticles for biological and pharmaceutical applications. Advanced Drug Delivery Reviews, 64, 246–255.  https://doi.org/10.1016/j.addr.2012.09.022.CrossRefGoogle Scholar
  61. Owens, D. E., & Peppas, N. A. (2006). Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics, 307, 93–102.  https://doi.org/10.1016/j.ijpharm.2005.10.010.CrossRefGoogle Scholar
  62. Pal, S. L., Jana, U., Manna, P. K., et al. (2011). Nanoparticle: An overview of preparation and characterization. Journal of Applied Pharmaceutical Science, 1, 228–234.Google Scholar
  63. Peer, D., Karp, J. M., Hong, S., et al. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2, 751–760.  https://doi.org/10.1038/nnano.2007.387.CrossRefGoogle Scholar
  64. Perrault, S. D., Walkey, C., Jennings, T., et al. (2009). Mediating tumor targeting efficiency of nanoparticles through design. Nano Letters, 9, 1909–1915.  https://doi.org/10.1021/nl900031y.CrossRefGoogle Scholar
  65. Pham, E., Yin, M., Peters, C. G., et al. (2016). Preclinical efficacy of bevacizumab with CRLX101, an investigational nanoparticle–drug conjugate, in treatment of metastatic triple-negative breast cancer. Cancer Research, 76, 4493–4503.  https://doi.org/10.1158/0008-5472.CAN-15-3435.CrossRefGoogle Scholar
  66. Qian, L., Zheng, J., Wang, K., et al. (2013). Cationic core–shell nanoparticles with carmustine contained within O6-benzylguanine shell for glioma therapy. Biomaterials, 34, 8968–8978.  https://doi.org/10.1016/j.biomaterials.2013.07.097.CrossRefGoogle Scholar
  67. Ranganath, S. H., Fu, Y., Arifin, D. Y., et al. (2010). The use of submicron/nanoscale PLGA implants to deliver paclitaxel with enhanced pharmacokinetics and therapeutic efficacy in intracranial glioblastoma in mice. Biomaterials, 31, 5199–5207.  https://doi.org/10.1016/j.biomaterials.2010.03.002.CrossRefGoogle Scholar
  68. Reddy, G. R., Bhojani, M. S., McConville, P., et al. (2006). Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clinical Cancer Research, 12, 6677–6686.  https://doi.org/10.1158/1078-0432.CCR-06-0946.CrossRefGoogle Scholar
  69. Sandanaraj, B. S., Gremlich, H.-U., Kneuer, R., et al. (2010). Fluorescent nanoprobes as a biomarker for increased vascular permeability: Implications in diagnosis and treatment of cancer and inflammation. Bioconjugate Chemistry, 21, 93–101.  https://doi.org/10.1021/bc900311h.CrossRefGoogle Scholar
  70. Sengupta, S., & Kulkarni, A. (2013). Design principles for clinical efficacy of cancer nanomedicine: A look into the basics. ACS Nano, 7, 2878–2882.  https://doi.org/10.1021/nn4015399.CrossRefGoogle Scholar
  71. Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: Progress, challenges and opportunities. Nature Reviews Cancer, 17, 20–37.  https://doi.org/10.1038/nrc.2016.108.CrossRefGoogle Scholar
  72. Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 68, 7–30.  https://doi.org/10.3322/caac.21442.CrossRefGoogle Scholar
  73. Singh, P. K., Doley, J., Kumar, G. R., et al. (2012). Oncolytic viruses & their specific targeting to tumour cells. Indian Journal of Medical Research, 136, 571–584.Google Scholar
  74. Sosnik, A., & Carcaboso, A. M. (2014). Nanomedicines in the future of pediatric therapy. Advanced Drug Delivery Reviews, 73, 140–161.  https://doi.org/10.1016/j.addr.2014.05.004.CrossRefGoogle Scholar
  75. Stephen, Z. R., Kievit, F. M., Veiseh, O., et al. (2014). Redox-responsive magnetic nanoparticle for targeted convection-enhanced delivery of O6-benzylguanine to brain tumors. ACS Nano, 8, 10383–10395.  https://doi.org/10.1021/nn503735w.CrossRefGoogle Scholar
  76. Sun, T., Zhang, Y. S., Pang, B., et al. (2014). Engineered nanoparticles for drug delivery in cancer therapy. Angewandte Chemie International Edition, 53, 12320–12364.  https://doi.org/10.1002/anie.201403036.CrossRefGoogle Scholar
  77. Surendiran, A., Sandhiya, S., Pradhan, S. C., & Adithan, C. (2009). Novel applications of nanotechnology in medicine. Indian Journal of Medical Research, 130, 689–701.Google Scholar
  78. Swaminathan, S. K., Roger, E., Toti, U., et al. (2013). CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. Journal of Controlled Release, 171, 280–287.  https://doi.org/10.1016/j.jconrel.2013.07.014.CrossRefGoogle Scholar
  79. Sykes, E. A., Chen, J., Zheng, G., & Chan, W. C. W. (2014). Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano, 8, 5696–5706.  https://doi.org/10.1021/nn500299p.CrossRefGoogle Scholar
  80. Thangapazham, R. L., Puri, A., Tele, S., et al. (2008). Evaluation of a nanotechnology-based carrier for delivery of curcumin in prostate cancer cells. International Journal of Oncology, 32, 1119–1123.  https://doi.org/10.3892/ijo.32.5.1119.CrossRefGoogle Scholar
  81. Tiwary, S., Morales, J. E., Kwiatkowski, S. C., et al. (2018). Metastatic brain tumors disrupt the blood-brain barrier and alter lipid metabolism by inhibiting expression of the endothelial cell fatty acid transporter Mfsd2a. Scientific Reports, 8, 1–13.  https://doi.org/10.1038/s41598-018-26636-6.CrossRefGoogle Scholar
  82. Torre, L. A., Islami, F., Siegel, R. L., et al. (2017). Global cancer in women: Burden and trends. Cancer Epidemiology, Biomarkers and Prevention, 26, 444–457.  https://doi.org/10.1158/1055-9965.EPI-16-0858.CrossRefGoogle Scholar
  83. Tzeng, S. Y., & Green, J. J. (2013). Therapeutic nanomedicine for brain cancer. Therapeutic Delivery, 4, 687–704.  https://doi.org/10.4155/tde.13.38.CrossRefGoogle Scholar
  84. Tzeng, S. Y., Guerrero-Cázares, H., Martinez, E. E., et al. (2011). Non-viral gene delivery nanoparticles based on Poly(β-amino esters) for treatment of glioblastoma. Biomaterials, 32, 5402–5410.  https://doi.org/10.1016/j.biomaterials.2011.04.016.CrossRefGoogle Scholar
  85. van der Meel, R., Vehmeijer, L. J. C., Kok, R. J., et al. (2013). Ligand-targeted particulate nanomedicines undergoing clinical evaluation: Current status. Advanced Drug Delivery Reviews, 65, 1284–1298.  https://doi.org/10.1016/j.addr.2013.08.012.CrossRefGoogle Scholar
  86. van Sluis, R., Bhujwalla, Z. M., Raghunand, N., et al. (1999). In vivo imaging of extracellular pH using 1H MRSI. Magnetic Resonance in Medicine, 41, 743–750.  https://doi.org/10.1002/(SICI)1522-2594(199904)41:4%3c743:AID-MRM13%3e3.0.CO;2-Z.CrossRefGoogle Scholar
  87. Velaei, K., Samadi, N., Barazvan, B., & Soleimani Rad, J. (2016). Tumor microenvironment-mediated chemoresistance in breast cancer. Breast, 30, 92–100.  https://doi.org/10.1016/j.breast.2016.09.002.CrossRefGoogle Scholar
  88. Venditto, V. J., & Szoka, F. C. (2013). Cancer nanomedicines: So many papers and so few drugs! Advanced Drug Delivery Reviews, 65, 80–88.  https://doi.org/10.1016/j.addr.2012.09.038.CrossRefGoogle Scholar
  89. Venkatesan, M., & Jolad, B. (2010). Nanorobots in cancer treatment. In International conference on “Emerging trends in robotics and communication technologies”, INTERACT-2010 (pp 258–264).  https://doi.org/10.1109/INTERACT.2010.5706154
  90. Weiner, George J. (2015). Building better monoclonal antibody-based therapeutics. Nature Reviews Cancer, 15, 361–370.  https://doi.org/10.1038/nrc3930.CrossRefGoogle Scholar
  91. Werner, M. E., Cummings, N. D., Sethi, M., et al. (2013). Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. International Journal of Radiation Oncology* Biology* Physics, 86, 463–468.  https://doi.org/10.1016/j.ijrobp.2013.02.009.CrossRefGoogle Scholar
  92. Wirth, T., & Ylä-Herttuala, S. (2014). Gene therapy used in cancer treatment. Biomedicines, 2, 149–162.  https://doi.org/10.3390/biomedicines2020149.CrossRefGoogle Scholar
  93. Xu, X., Ho, W., Zhang, X., et al. (2015). Cancer nanomedicine: From targeted delivery to combination therapy. Trends in Molecular Medicine, 21, 223–232.  https://doi.org/10.1016/j.molmed.2015.01.001.CrossRefGoogle Scholar
  94. Yang, C., Chan, K. K., Lin, W.-J., et al. (2017). Biodegradable nanocarriers for small interfering ribonucleic acid (siRNA) co-delivery strategy increase the chemosensitivity of pancreatic cancer cells to gemcitabine. Nano Research, 10, 3049–3067.  https://doi.org/10.1007/s12274-017-1521-7.CrossRefGoogle Scholar
  95. Yang, L., Zhang, X., Ye, M., et al. (2011). Aptamer-conjugated nanomaterials and their applications. Advanced Drug Delivery Reviews, 63, 1361–1370.  https://doi.org/10.1016/j.addr.2011.10.002.CrossRefGoogle Scholar
  96. Zhang, H. (2016). Onivyde for the therapy of multiple solid tumors. OncoTargets and therapy, 9, 3001–3007.  https://doi.org/10.2147/OTT.S105587.CrossRefGoogle Scholar
  97. Zhang, J., Jiang, C., Figueiró Longo, J. P., et al. (2018). An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharmaceutica Sinica B, 8, 137–146.  https://doi.org/10.1016/j.apsb.2017.09.003.CrossRefGoogle Scholar
  98. Zhang, P., Hu, L., Yin, Q., et al. (2012). Transferrin-modified c[RGDfK]-paclitaxel loaded hybrid micelle for sequential blood-brain barrier penetration and glioma targeting therapy. Molecular Pharmaceutics, 9, 1590–1598.  https://doi.org/10.1021/mp200600t.CrossRefGoogle Scholar
  99. Zhang, Y., Yu, J., Zhang, L., et al. (2016). Enhanced anti-tumor effects of doxorubicin on glioma by entrapping in polybutylcyanoacrylate nanoparticles. Tumor Biology, 37, 2703–2708.  https://doi.org/10.1007/s13277-015-4106-7.CrossRefGoogle Scholar
  100. Zou, L., Wang, H., He, B., et al. (2016). Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics, 6, 762–772.  https://doi.org/10.7150/thno.14988.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Enas Abu-Qudais
    • 1
  • Balakumar Chandrasekaran
    • 1
    Email author
  • Sara Samarneh
    • 1
  • Ghadir Kassab
    • 1
  1. 1.Faculty of PharmacyPhiladelphia UniversityAmmanJordan

Personalised recommendations