Advertisement

On the Splitting Field of Some Polynomials with Class Number One

  • Abdelmalek AziziEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1133)

Abstract

Let P(X) be an irreducible monic polynomial of Open image in new window, d be the discriminant of P(X) and L be the splitting field of P(X). In this paper, we study the class number one problem for the splitting field L or the condition for which the class number of L is equal to 1 using an algebraic approach based on the Hilbert class field towers of some fields.

Keywords

The class number one problem The splitting field of a polynomials The Hilbert class field towers 

References

  1. 1.
    Ahn, J.-H., Boutteaux, G., Kwon, S.-H., Louboutin, S.: The class number one problem for some non-normal CM-fields of degree 2p. J. Number Theory 132, 1793–1806 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arno, S., Robinson, M.L., Weeler, F.S.: Imaginary quadratic field with small odd class number. Acta Arithmetica I.XXXIII(4), 295–330 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Elstodt, J., Grunewal, F., Mennicke, J.: On unramified \(A_n\)-extension of quadratic number fields. Glasgow Math. J. 27, 31–37 (1985). J. Math. 4, 367–369 (1974)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Goldfeld, D.: The Gauss Class Number Problem for Imaginary Quadratic Fields. Heegner Points and Rankin L-Series MSRI Publications, vol. 49 (2004)Google Scholar
  5. 5.
    Goldfeld, D.: Gauss class number problem for imaginary quadratic fields. Bull. (New Ser.) Am. Math. Soc. 13(1), 23–37 (1985)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Guruswami, V.: Constructions of codes from number fields. In: AAECC-14, Melbourne, Australia, 26–30 November 2001Google Scholar
  7. 7.
    Kondo, T.: Algebraic number fields with the discriminant equal to that of a quadratic number field. J. Math. Soc. Japan 47(1), 31–36 (1995)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lenstra, W.: Codes from algebraic number fields. In: Hazewinkel, M., Lenstra, J.K., Meertyens, L.G.L.T. (eds.) Mathematics and Computer Science II, Fundamental Contributions in the H. Netherlands since 1945, CWI Monograph 4, pp. 95–104. North-Holland, Amsterdam (1986)Google Scholar
  9. 9.
    Moser, N.: Unités et nombre de classes d’une extension galoisienne diédrale de Q. Séminaire de théorie des nombres de Grenoble, tome 3, exp. no. 4, pp. 1–22 (1973–1974)Google Scholar
  10. 10.
    Movahhedi, A.: Sur une classe d’extension non ramifiées. Acta Arithmetica, LIX.1 (1991)Google Scholar
  11. 11.
    Nakagawa, J.: on the Galois group of number field with square free discriminant, comment. Math. Univ. St. Paul 37(1), 95–98 (1988)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Osada, H.: The Galois group of the polynomials \(X^{n} + aX + b\). J. Number Theory 25, 230–238 (1987)MathSciNetCrossRefGoogle Scholar
  13. 13.
    PARI/GP (version 2.7.5). http://pari.math.u-bordeaux.fr/
  14. 14.
    Stark, H.M.: The gauss class-number problems. In: Clay Mathematics Proceedings, vol. 7 (2007)Google Scholar
  15. 15.
    Temkine, A.: Tours de corps de classes de Hilbert pour les corps globaux et applications. Thèse de Doctorat, Faculté des sciences de Luminy, Université de la Méditerranée, Aix-Marseille II, France (2000)Google Scholar
  16. 16.
    Yamamura, K.: On unramified Galois extensions of real quadratic number field. Osaka J. Math. 23, 471–478 (1986)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Watkins, M.: Class numbers of imaginary quadratic fields. Math. Comput. 73(246), 907–938 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of SciencesMohammed Premier UniversityOujdaMorocco

Personalised recommendations