Tumour Microenvironment in Skin Carcinogenesis

  • Simona Roxana Georgescu
  • Mircea Tampa
  • Cristina Iulia Mitran
  • Madalina Irina Mitran
  • Constantin Caruntu
  • Ana Caruntu
  • Mihai Lupu
  • Clara Matei
  • Carolina Constantin
  • Monica Neagu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1226)


Tumour microenvironment is a complex system comprising cells and molecules that will provide the necessary conditions for tumour development and progression. Cells residing in the tumour microenvironment gain specific phenotypes and specific functions that are pro-tumorigenic. Tumour progression is in fact a combination between tumour cell characteristics and its interplay with tumour microenvironment. This dynamic network will allow tumour cells to grow, migrate and invade tissues. In the present chapter, we are highlighting some traits that characterise tumour microenvironment in basal cell carcinoma, squamous cell carcinoma and cutaneous melanoma. In skin cancers, there are some common tumour microenvironment characteristics such as the presence of tumour-associated macrophages and regulatory T lymphocytes that are non-tumour cells promoting tumorigenesis. There are also skin cancer type differences in terms of tumour microenvironment characteristics. Thus, markers such as macrophage migration inhibitory factor in melanoma or the extraordinary diverse genetic make-up in the cancer-associated fibroblasts associated to squamous cell carcinoma are just a few of specific traits in skin cancer types. New technological advances for evaluation of tumour environment are presented. Thus, non-invasive skin imaging techniques such as reflectance confocal microscopy can evaluate skin tumour inflammatory infiltrates for density and cellular populations. Analysing tumour micromedium in depth may offer new insights into cancer therapy and identify new therapy targets.


Skin cancer Basal cell carcinoma Squamous cell carcinoma Cutaneous melanoma Tumour microenvironment Reflectance confocal microscopy 



Authors were partially financed through Grants PN and PN-III-P1-1.2-PCCDI-2017-0341/2018


  1. 1.
    Samarasinghe V, Madan V (2012) Nonmelanoma skin cancer. J Cutan Aesthet Surg 5(1):3–10PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Duarte AF, Sousa-Pinto B, Haneke E et al (2018) Risk factors for development of new skin neoplasms in patients with past history of skin cancer: a survival analysis. Sci Rep 8(1):15744PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Wu T, Dai Y (2017) Tumor microenvironment and therapeutic response. Cancer Lett 387:61–68PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Sarbu MI, Matei C, Mitran CI et al (2019) Photodynamic therapy: a hot topic in dermato-oncology. Oncol Lett 17(5):4085–4093PubMedPubMedCentralGoogle Scholar
  5. 5.
    Sautès-Fridman C, Cherfils-Vicini J, Damotte D et al (2011) Tumor microenvironment is multifaceted. Cancer Metastasis Rev 30(1):13–25PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Tzanakakis GN, Neagu M, Tsatsakis AM, Nikitovic D (2019) Proteoglycans and immunobiology of cancer-therapeutic implications. Front Immunol 10:875PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ahmed F, Haass NK (2018) Microenvironment-driven dynamic heterogeneity and phenotypic plasticity as a mechanism of melanoma therapy resistance. Front Oncol 8:173PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Aksenenko M, Palkina N, Komina A et al (2019) Differences in microRNA expression between melanoma and healthy adjacent skin. BMC Dermatol 19(1):1PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Eskiizmir G (2015) Tumor microenvironment in head and neck squamous cell carcinomas. Turk Arch Otorhinolaryngol 53:120–127PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bhatia S, Oweida A, Lennon S et al (2019) Inhibition of EphB4-ephrin-B2 signaling reprograms the tumor immune microenvironment in head and neck cancers. Cancer Res 79(10):2722–2735PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Fujimura T, Kakizaki A, Furudate S et al (2016) Tumor-associated macrophages in skin: how to treat their heterogeneity and plasticity. J Dermatol Sci 83(3):167–173PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Santos EM, de Matos FR, de Morais EF et al (2019) Evaluation of Cd8+ and natural killer cells defense in oral and oropharyngeal squamous cell carcinoma. J Cranio-Maxillofac Surg 11(4):E440Google Scholar
  13. 13.
    Shang B, Liu Y, Jiang SJ, Liu Y (2015) Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 5:15179PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Evrard D, Szturz P, Tijeras-Raballand A et al (2019) Macrophages in the microenvironment of head and neck cancer: potential targets for cancer therapy. Oral Oncol 88:29–38PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Li YY, Zhou CX, Gao Y (2018 Aug 1) Interaction between oral squamous cell carcinoma cells and fibroblasts through TGF-β1 mediated by podoplanin. Exp Cell Res 369(1):43–53PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Liu T, Zhou L, Li D, Andl T, Zhang Y (2019) Cancer-associated fibroblasts build and secure the tumor microenvironment. Front Cell Dev Biol 7:60PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    LeBleu VS, Kalluri R (2018) A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis Model Mech 11(4):029447CrossRefGoogle Scholar
  18. 18.
    Ilie MA, Caruntu C, Lupu M, Lixandru D, Georgescu SR, Bastian A, Constantin C, Neagu M, Zurac SA, Boda D (2019) Current and future applications of confocal laser scanning microscopy imaging in skin oncology. Oncol Lett 17(5):4102–4111PubMedPubMedCentralGoogle Scholar
  19. 19.
    Elenitsas R, Nousari CH, Seykora JT (2005) Laboratory methods. In: Elder DE, Elenitzas R, Johnson BL, Murphy GF (eds) Lever’s histopathology of the skin, 9th edn. Lippincott Williams & Wilkins, Philadelphia, PA, pp 59–60Google Scholar
  20. 20.
    Wong CS, Strange RC, Lear JT (2003) Basal cell carcinoma. Br Med J 327(7418):794–798CrossRefGoogle Scholar
  21. 21.
    Lupu M, Caruntu C, Ghita MA et al (2016) Gene expression and proteome analysis as sources of biomarkers in basal cell carcinoma. Dis Markers 2016:9831237PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Rubin AI, Chen EH, Ratner D (2005) Basal-cell carcinoma. N Engl J Med 353(21):2262–2269PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Costescu M, Coman OA, Tampa M et al (2013) Axillary basal cell carcinoma-a rare form of a frequent kind of carcinoma. Romanian J Morphol Embryol 54(3 Suppl):851–856Google Scholar
  24. 24.
    Tjiu JW, Chen JS, Shun CT et al (2009) Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Investig Dermatol 129(4):1016–1025PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kaiser U, Loeffler KU, Nadal J et al (2018) Polarization and distribution of tumor-associated macrophages and COX-2 expression in basal cell carcinoma of the ocular Adnexae. Curr Eye Res 43(9):1126–1135PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Padoveze EH, Chiacchio ND, Ocampo-Garza J et al (2017) Macrophage subtypes in recurrent nodular basal cell carcinoma after Mohs micrographic surgery. Int J Dermatol 56(12):1366–1372PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    König S, Nitzki F, Uhmann A et al (2014) Depletion of cutaneous macrophages and dendritic cells promotes growth of basal cell carcinoma in mice. PLoS One 9(4):e93555PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Pellegrini C, Orlandi A, Costanza G et al (2017) Expression of IL-23/Th17-related cytokines in basal cell carcinoma and in the response to medical treatments. PLoS One 12(8):e0183415PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Omland SH (2016) Local immune response in cutaneous basal cell carcinoma. Acta Derm Venereol 64(10):B5412Google Scholar
  30. 30.
    Omland SH, Nielsen PS, Gjerdrum LM et al (2016) Immunosuppressive environment in basal cell carcinoma: the role of regulatory T cells. Acta Derm Venereol 96(7):917–921PubMedCrossRefGoogle Scholar
  31. 31.
    Kaporis HG, Guttman-Yassky E, Lowes MA et al (2007) Human basal cell carcinoma is associated with Foxp3+ T cells in a Th2 dominant microenvironment. J Investig Dermatol 127(10):2391–2398PubMedCrossRefGoogle Scholar
  32. 32.
    Jin HT, Ahmed R, Okazaki T (2011) Role of PD-1 in regulating T-cell immunity. Curr Top Microbiol Immunol 350:17–37PubMedPubMedCentralGoogle Scholar
  33. 33.
    Georgescu SR, Ioghen MR, Sarbu MI et al (2018) Biological therapy in the treatment of melanoma. J Mind Med Sci 5(2):169–175CrossRefGoogle Scholar
  34. 34.
    Lipson EJ, Lilo MT, Ogurtsova A et al (2017) Basal cell carcinoma: PD-L1/PD-1 checkpoint expression and tumor regression after PD-1 blockade. J Immunother Cancer 5:23PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ghita MA, Caruntu C, Rosca AE, Kaleshi H, Caruntu A, Moraru L, Docea AO, Zurac S, Boda D, Neagu M, Spandidos DA, Tsatsakis AM (2016) Reflectance confocal microscopy and dermoscopy for in vivo, non-invasive skin imaging of superficial basal cell carcinoma. Oncol Lett 11(5):3019–3024PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Căruntu C, Boda D, Guţu DE, Căruntu A (2014) In vivo reflectance confocal microscopy of basal cell carcinoma with cystic degeneration. Romanian J Morphol Embryol 55(4):1437–1441Google Scholar
  37. 37.
    Longo C, Lallas A, Kyrgidis A et al (2014) Classifying distinct basal cell carcinoma subtype by means of dermatoscopy and reflectance confocal microscopy. J Am Acad Dermatol 71(4):716–724PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Lupu M, Caruntu C, Solomon I et al (2017) The use of in vivo reflectance confocal microscopy and dermoscopy in the preoperative determination of basal cell carcinoma histopathological subtypes. DermatoVenerol 62:7–13Google Scholar
  39. 39.
    Malvehy J, Puig S, Carrera C, Segura S (2012) Nodular melanoma. In: Hofmann-Wellenhof R, Pellacani G, Malvehy J, Soyer HP (eds) Reflectance confocal microscopy for skin diseases. Springer, Berlin Heidelberg, p 198Google Scholar
  40. 40.
    Lupu M, Popa MI, Voiculescu VM et al (2019) A retrospective study of the diagnostic accuracy of in vivo reflectance confocal microscopy for basal cell carcinoma diagnosis and subtyping. J Clin Med 8(4):1–14CrossRefGoogle Scholar
  41. 41.
    Omland SH, Wettergren EE, Mollerup S et al (2017) Cancer associated fibroblasts (CAFs) are activated in cutaneous basal cell carcinoma and in the peritumoural skin. BMC Cancer 17(1):675PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lacina L, Smetana K Jr, Dvořánková B et al (2007) Stromal fibroblasts from basal cell carcinoma affect phenotype of normal keratinocytes. Br J Dermatol 156(5):819–829PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Sasaki K, Sugai T, Ishida K et al (2018) Analysis of cancer-associated fibroblasts and the epithelial-mesenchymal transition in cutaneous basal cell carcinoma, squamous cell carcinoma, and malignant melanoma. Hum Pathol 79:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Yamamura M, Modlin RL, Ohmen JD et al (1993) Local expression of antiinflammatory cytokines in cancer. J Clin Invest 91(3):1005–1010PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Elamin I, Zecević RD, Vojvodić D et al (2008) Cytokine concentrations in basal cell carcinomas of different histological types and localization. Acta Dermatovenerol Alp Pannonica Adriat 17(2):55–59PubMedPubMedCentralGoogle Scholar
  46. 46.
    McAllister F, Kolls JK (2015) Th17 cytokines in non-melanoma skin cancer. Eur J Immunol 45(3):692–694PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Voiculescu V, Calenic B, Ghita M et al (2016) From normal skin to squamous cell carcinoma: a quest for novel biomarkers. Dis Markers 2016:4517492PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Burton KA, Ashack KA, Khachemoune A (2016) Cutaneous squamous cell carcinoma: a review of high-risk and metastatic disease. Am J Clin Dermatol 17(5):491–508PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Tampa M, Caruntu C, Mitran MI et al (2018) Markers of oral lichen planus malignant transformation. Dis Markers 2018:1959506PubMedPubMedCentralGoogle Scholar
  50. 50.
    Matei C, Tampa M, Ion RM et al (2012) Photodynamic properties of aluminium sulphonated phthalocyanines in human displazic oral keratinocytes experimental model. Dig J Nanomater Biostruct 7(4):1535–1547Google Scholar
  51. 51.
    Matei C, Caruntu C, Ion RM, Georgescu SR, Dumitrascu GR, Constantin C, Neagu M (2014) Protein microarray for complex apoptosis monitoring of dysplastic oral keratinocytes in experimental photodynamic therapy. Biol Res 47:33PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Pettersen JS, Fuentes-Duculan J, Suárez-Fariñas M et al (2011) Tumor-associated macrophages in the cutaneous SCC microenvironment are heterogeneously activated. J Investig Dermatol 131(6):1322–1330PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Tampa M, Mitran MI, Mitran CI et al (2018) Mediators of inflammation–a potential source of biomarkers in oral squamous cell carcinoma. J Immunol Res 2018:1061780PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Koontongkaew S (2013) The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer 4(1):66–83PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Alves AM, Diel LF, Lamers ML (2018) Macrophages and prognosis of oral squamous cell carcinoma: a systematic review. J Oral Pathol Med 47(5):460–467PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Wehrhan F, Buttner-Herold M, Hyckel P et al (2014) Increased malignancy of oral squamous cell carcinomas (OSCC) is associated with macrophage polarization in regional lymph nodes - an immunohistochemical study. BMC Cancer 14:522PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Boxberg M, Leising L, Steiger K et al (2019) Composition and clinical impact of the immunologic tumor microenvironment in oral squamous cell carcinoma. J Immunol 202(1):278–291PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Hu Y, He MY, Zhu LF et al (2016) Tumor-associated macrophages correlate with the clinicopathological features and poor outcomes via inducing epithelial to mesenchymal transition in oral squamous cell carcinoma. J Exp Clin Cancer Res 35(1):12PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Curry JM, Sprandio J, Cognetti D et al (2014) Tumor microenvironment in head and neck squamous cell carcinoma. Semin Oncol 41(2):217–234PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Peltanova B, Raudenska M, Masarik M (2019) Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol Cancer 18(1):63PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    de Ruiter EJ, Ooft ML, Devriese LA et al (2017) The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: a systematic review and meta-analysis. Oncoimmunology 6(11):e1356148PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Wolf GT, Chepeha DB, Bellile E, Nguyen A, Thomas D, McHugh J et al (2015) Tumor infiltrating lymphocytes (TIL) and prognosis in oral cavity squamous carcinoma: a preliminary study. Oral Oncol 51(1):501–509CrossRefGoogle Scholar
  63. 63.
    De Meulenaere A, Vermassen T, Aspeslagh S et al (2017) TILs in head and neck cancer: ready for clinical implementation and why (not)? Head Neck Pathol 11(3):354–363PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Lupu M, Caruntu A, Moraru L et al (2018) Non-invasive imaging techniques for early diagnosis of radiation-induced squamous cell carcinoma of the lip. Romanian J Morphol Embryol 59(3):949–953Google Scholar
  65. 65.
    Cao T, Oliviero M, Rabinovitz HS (2012) Squamous cell carcinoma. In: Hofmann-Wellenhof R, Pellacani G, Malvehy J, Soyer HP (eds) Reflectance confocal microscopy for skin diseases. Springer, Berlin Heidelberg, p 297CrossRefGoogle Scholar
  66. 66.
    Plzák J, Bouček J, Bandúrová V et al (2019) The head and neck squamous cell carcinoma microenvironment as a potential target for cancer therapy. Cancers 11(4):440PubMedCentralCrossRefGoogle Scholar
  67. 67.
    Erez N, Truitt M, Olson P et al (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell 17(2):135–147PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Fullár A, Kovalszky I, Bitsche M et al (2012) Tumor cell and carcinoma-associated fibroblast interaction regulates matrix metalloproteinases and their inhibitors in oral squamous cell carcinoma. Exp Cell Res 318(13):1517–1527PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Hadler-Olsen E, Wirsing AM (2019) Tissue-infiltrating immune cells as prognostic markers in oral squamous cell carcinoma: a systematic review and meta-analysis. Br J Cancer 120(7):714–727PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Larsen SK, Gao Y, Basse PH (2014) NK cells in the tumor microenvironment. Crit Rev Oncog 19(1–2):91–105PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ziober AF, Falls EM, Ziober BL (2006) The extracellular matrix in oral squamous cell carcinoma: friend or foe? Head Neck 28(8):740–749PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Lyons AJ, Jones J (2007) Cell adhesion molecules, the extracellular matrix and oral squamous carcinoma. Int J Oral Maxillofac Surg 36(8):671–679PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Mhawech P, Dulguerov P, Assaly M et al (2005) EB-D fibronectin expression in squamous cell carcinoma of the head and neck. Oral Oncol 41(1):82–88PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Vilen ST, Salo T, Sorsa T et al (2013) Fluctuating roles of matrix metalloproteinase-9 in oral squamous cell carcinoma. Sci World J 2013:920595CrossRefGoogle Scholar
  75. 75.
    Pries R, Nitsch S, Wollenberg B (2006) Role of cytokines in head and neck squamous cell carcinoma. Expert Rev Anticancer Ther 6(9):1195–1203PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Lee CH, Chang JS, Syu SH et al (2015) IL-1β promotes malignant transformation and tumor aggressiveness in oral cancer. J Cell Physiol 230(4):875–884PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Wasmer MH, Krebs P (2017) The role of IL-33-dependent inflammation in the tumor microenvironment. Front Immunol 7:682PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Chen Z, Malhotra PS, Thomas GR et al (1999) Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clin Cancer Res 5(6):1369–1379PubMedPubMedCentralGoogle Scholar
  79. 79.
    Choudhary MM, France TJ, Teknos TN et al (2016) Interleukin-6 role in head and neck squamous cell carcinoma progression. World J Otorhinolaryngol Head Neck Surg 2(2):90–97PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Santana AL, Felsen D, Carucci JA (2017) Interleukin-22 and cyclosporine in aggressive cutaneous squamous cell carcinoma. Dermatol Clin 35(1):73–84PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Heino PJ, Mylläri PH, Jahkola TA et al (2019) Long-term quality of life of melanoma survivors is comparable to that of the general population. Anticancer Res 39(5):2633–2640PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Voiculescu VM, Lisievici CV, Lupu M et al (2019) Mediators of inflammation in topical therapy of skin cancers. Mediat Inflamm 2019:8369690CrossRefGoogle Scholar
  83. 83.
    Pieniazek M, Matkowski R, Donizy P (2018) Macrophages in skin melanoma-the key element in melanomagenesis. Oncol Lett 15(4):5399–5404PubMedPubMedCentralGoogle Scholar
  84. 84.
    Georgescu SR, Sârbu MI, Matei C et al (2017) Capsaicin: friend or foe in skin cancer and other related malignancies? Nutrients 9(12):1365PubMedCentralCrossRefGoogle Scholar
  85. 85.
    Little EG, Eide MJ (2012) Update on the current state of melanoma incidence. Dermatol Clin 30(3):355–361PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Caruntu C, Mirica A, Roca AE et al (2016) The role of estrogens and estrogen receptors in melanoma development and progression. Acta Endocrinol 12(2):234–241Google Scholar
  87. 87.
    Rastrelli M, Tropea S, Rossi CR et al (2014) Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo 28(6):1005–1011PubMedPubMedCentralGoogle Scholar
  88. 88.
    Botti G, Cerrone M, Scognamiglio G et al (2013) Microenvironment and tumor progression of melanoma: new therapeutic prospectives. J Immunotoxicol 10(3):235–252PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Chen P, Huang Y, Bong R et al (2011) Tumor-associated macrophages promote angiogenesis and melanoma growth via adrenomedullin in a paracrine and autocrine manner. Clin Cancer Res 17(23):7230–7239PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Neagu M, Constantin C, Caruntu C et al (2019) Inflammation: a key process in skin tumorigenesis. Oncol Lett 17(5):4068–4084PubMedPubMedCentralGoogle Scholar
  91. 91.
    Chanmee T, Ontong P, Konno K et al (2014) Tumor-associated macrophages as major players in the tumor microenvironment. Cancers. 6(3):1670–1690PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Falleni M, Savi F, Tosi D et al (2017) M1 and M2 macrophages’ clinicopathological significance in cutaneous melanoma. Melanoma Res 27(3):200–210PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Koelblinger P, Emberger M, Drach M et al (2019) Increased tumour cell PD-L1 expression, macrophage and dendritic cell infiltration characterise the tumour microenvironment of ulcerated primary melanomas. J Eur Acad Dermatol Venereol 33(4):667–675PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Somasundaram R, Herlyn M, Wagner S (2016) The role of tumor microenvironment in melanoma therapy resistance. Melanoma Manag 3(1):23–32PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Neagu M, Constantin C, Longo C (2015) Chemokines in the melanoma metastasis biomarkers portrait. J Immunoass Immunochem 36(6):559–566CrossRefGoogle Scholar
  96. 96.
    Soumoy L, Kindt N, Ghanem G et al (2019) Role of macrophage migration inhibitory factor (MIF) in melanoma. Cancers 11(4):529PubMedCentralCrossRefGoogle Scholar
  97. 97.
    Giavina-Bianchi MH, Giavina-Bianchi Junior PF, Festa Neto C (2017) Melanoma: tumor microenvironment and new treatments. An Bras Dermatol 92(2):156–166PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Gooden MJ, de Bock GH, Leffers N et al (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105(1):93–103PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Antohe M, Nedelcu RI, Nichita L et al (2019) Tumor infiltrating lymphocytes: the regulator of melanoma evolution. Oncol Lett 17(5):4155–4161PubMedPubMedCentralGoogle Scholar
  100. 100.
    Lee N, Zakka LR, Mihm MC Jr et al (2016) Tumour-infiltrating lymphocytes in melanoma prognosis and cancer immunotherapy. Pathology 48(2):177–187PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Berghoff AS, Ricken G, Widhalm G et al (2015) Tumour-infiltrating lymphocytes and expression of programmed death ligand 1 (PD-L1) in melanoma brain metastases. Histopathology 66(2):289–299PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Ren M, Dai B, Kong YY et al (2018) PD-L1 expression in tumour-infiltrating lymphocytes is a poor prognostic factor for primary acral melanoma patients. Histopathology 73(3):386–396PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Nguyen LT, Yen PH, Nie J et al (2010) Expansion and characterization of human melanoma tumor-infiltrating lymphocytes (TILs). PLoS One 5(11):e13940PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Andersen R, Donia M, Ellebaek E et al (2016) Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated IL2 regimen. Clin Cancer Res 22(15):3734–3745PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Gurzu S, Beleaua MA, Jung I (2018) The role of tumor microenvironment in development and progression of malignant melanomas–a systematic review. Romanian J Morphol Embryol 59(1):23–28Google Scholar
  106. 106.
    Ziani L, Safta-Saadoun TB, Gourbeix J et al (2017) Melanoma-associated fibroblasts decrease tumor cell susceptibility to NK cell-mediated killing through matrix-metalloproteinases secretion. Oncotarget 8(12):19780PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Zurac S, Neagu M, Constantin C et al (2016) Variations in the expression of TIMP1, TIMP2 and TIMP3 in cutaneous melanoma with regression and their possible function as prognostic predictors. Oncol Lett 11(5):3354–3360PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Hsu MY, Meier F, Herlyn M (2002) Melanoma development and progression: a conspiracy between tumor and host. Differentiation 70(9–10):522–536PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Erdogan B, Webb DJ (2017) Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans 45(1):229–236PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Naves LB, Almeida L, Ramakrishna S (2017) Understanding the microenvironment of melanoma cells for the development of target drug delivery systems. EMJ Oncol 5(1):85–92Google Scholar
  111. 111.
    Gama Duarte J, Peyper JM, Blackburn JM (2018) B cells and antibody production in melanoma. Mamm Genome 29(11–12):790–805PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Neagu M, Constantin C, Zurac S (2013) Immune parameters in the prognosis and therapy monitoring of cutaneous melanoma patients: experience, role, and limitations. Biomed Res Int 2013:107940PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Somasundaram R, Zhang G, Fukunaga-Kalabis M, Perego M, Krepler C, Xu X, Wagner C, Hristova D, Zhang J, Tian T, Wei Z (2017) Tumor-associated B-cells induce tumor heterogeneity and therapy resistance. Nat Commun 8(1):607PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Ladányi A, Kiss J, Mohos A et al (2011) Prognostic impact of B-cell density in cutaneous melanoma. Cancer Immunol Immunother 60(12):1729–1738PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Roberts EW, Broz ML, Binnewies M et al (2016) Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30(2):324–336PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Preynat-Seauve O, Contassot E, Schuler P et al (2007) Melanoma-infiltrating dendritic cells induce protective antitumor responses mediated by T cells. Melanoma Res 17(3):169–176PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Stoitzner P, Green LK, Jung JY et al (2008) Inefficient presentation of tumor-derived antigen by tumor-infiltrating dendritic cells. Cancer Immunol Immunother 57(11):1665–1673PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Tucci M, Stucci LS, Mannavola F et al (2019) Defective levels of both circulating dendritic cells and T-regulatory cells correlate with risk of recurrence in cutaneous melanoma. Clin Transl Oncol 21(7):845–854PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Neagu M, Constantin C, Popescu ID et al (2019) Inflammation and metabolism in cancer cell–mitochondria key player. Front Oncol 9:348PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Böhme I, Bosserhoff AK (2016) Acidic tumor microenvironment in human melanoma. Pigment Cell Melanoma Res 29(5):508–523PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Estrella V, Chen T, Lloyd M et al (2013) Acidity generated by the tumor microenvironment drives local invasion. Cancer Res 73(5):1524–1535PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Bedogni B, Powell MB (2009) Hypoxia, melanocytes and melanoma–survival and tumor development in the permissive microenvironment of the skin. Pigment Cell Melanoma Res 22(2):166–174PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Fischer GM, Vashisht Gopal YN, McQuade JL et al (2018) Metabolic strategies of melanoma cells: mechanisms, interactions with the tumor microenvironment, and therapeutic implications. Pigment Cell Melanoma Res 31(1):11–30PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Rofstad EK, Mathiesen B, Kindem K et al (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66(13):6699–6707PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Gonda TA, Tu S, Wang TC (2009) Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle 8(13):2005–2013PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Georgescu SR, Mitran CI, Mitran MI et al (2018) New insights in the pathogenesis of HPV infection and the associated carcinogenic processes: the role of chronic inflammation and oxidative stress. J Immunol Res 2018:5315816PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Tampa M, Matei CL et al (2013) Zinc trisulphonated phthalocyanine used in photodynamic therapy of dysplastic oral keratinocytes. Rev Chimie 64(6):639–645Google Scholar
  128. 128.
    Villanueva J, Herlyn M (2008) Melanoma and the tumor microenvironment. Curr Oncol Rep 10(5):439–446PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Surcel M, Constantin C, Caruntu C et al (2017) Inflammatory cytokine pattern is sex-dependent in mouse cutaneous melanoma experimental model. J Immunol Res 2017:9212134PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    von Felbert V, Córdoba F, Weissenberger J et al (2005) Interleukin-6 gene ablation in a transgenic mouse model of malignant skin melanoma. Am J Pathol 166(3):831–841CrossRefGoogle Scholar
  131. 131.
    Gabellini C, Gómez-Abenza E, Ibáñez-Molero S et al (2018) Interleukin 8 mediates bcl-xL-induced enhancement of human melanoma cell dissemination and angiogenesis in a zebrafish xenograft model. Int J Cancer 142(3):584–596PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Lázár-Molnár E, Hegyesi H, Tóth S et al (2000) Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine 12(6):547–554PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Yao W, Li Y, Zeng L, Zhang X et al (2019) Intratumoral injection of dendritic cells overexpressing interleukin-12 inhibits melanoma growth. Oncol Rep 42(1):370–376PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Simona Roxana Georgescu
    • 1
    • 2
  • Mircea Tampa
    • 1
    • 2
  • Cristina Iulia Mitran
    • 1
    • 3
  • Madalina Irina Mitran
    • 1
    • 3
  • Constantin Caruntu
    • 1
    • 4
  • Ana Caruntu
    • 5
    • 6
  • Mihai Lupu
    • 7
  • Clara Matei
    • 1
  • Carolina Constantin
    • 8
    • 9
  • Monica Neagu
    • 8
    • 9
    • 10
  1. 1.“Carol Davila” University of Medicine and PharmacyBucharestRomania
  2. 2.“Victor Babes” Clinical Hospital for Infectious DiseasesBucharestRomania
  3. 3.“Cantacuzino” National Medico-Military Institute for Research and DevelopmentBucharestRomania
  4. 4.Department of Dermatology“Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic DiseasesBucharestRomania
  5. 5.Department of Oral and Maxillofacial Surgery“Carol Davila” Central Military Emergency HospitalBucharestRomania
  6. 6.Faculty of Medicine, Department of Preclinical Sciences“Titu Maiorescu” UniversityBucharestRomania
  7. 7.Department of DermatologyMEDAS Medical CenterBucharestRomania
  8. 8.Immunology Department“Victor Babes” National Institute of PathologyBucharestRomania
  9. 9.Colentina Clinical HospitalBucharestRomania
  10. 10.Faculty of BiologyUniversity of BucharestBucharestRomania

Personalised recommendations