Reliable Domain Adaptation with Classifiers Competition

  • Jingru Fu
  • Lei ZhangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11936)


Unsupervised domain adaptation (UDA) aims to transfer labeled source domain knowledge to the unlabeled target domain. Previous methods usually solve it by minimizing joint distribution divergence and obtaining the pseudo target labels via source classifier. However, those methods ignore that the source classifier always misclassifies partial target data and the prediction bias seriously deteriorates adaptation performance. It remains an open issue but ubiquitous in UDA, and to alleviate this issue, a Reliable Domain Adaptation (RDA) method is proposed in this paper. Specifically, we propose double task-classifiers and dual domain-specific projections to align those easily misclassified and unreliable target samples into reliable ones in an adversarial manner. In addition, the domain shift of both manifold and category space is reduced in the projection learning step. Extensive experiments on various databases demonstrate the superiority of RDA over state-of-the-art unsupervised domain adaptation methods.


Domain adaptation Source domain Target domain 


  1. 1.
    Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. ICCV 157(10), 2066–2073 (2012)Google Scholar
  2. 2.
    Baktashmotlagh, M., Harandi, M.T., Lovell, B.C., Salzmann, M.: Unsupervised domain adaptation by domain invariant projection. In: ICCV, pp. 769–776 (2013)Google Scholar
  3. 3.
    Baktashmotlagh, M., Harandi, M.T., Lovell, B.C., Salzmann, M.: Domain adaptation on the statistical manifold. In: CVPR, pp. 2481–2488 (2014)Google Scholar
  4. 4.
    Belkin, M., Niyogi, P., Sindhwani, V.: Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples. (2006)Google Scholar
  5. 5.
    Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1–2), 151–175 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)CrossRefGoogle Scholar
  7. 7.
    Chu, W.S., Torre, F.D.L., Cohn, J.F.: Selective transfer machine for personalized facial expression analysis. IEEE Trans. Pattern Anal. Mach. Intell. 39, 529–545 (2017)CrossRefGoogle Scholar
  8. 8.
    Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adaptation using subspace alignment. In: ICCV, pp. 2960–2967 (2014)Google Scholar
  9. 9.
    Ghifary, M., Balduzzi, D., Kleijn, W.B., Zhang, M.: Scatter component analysis: a unified framework for domain adaptation and domain generalization. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1414–1430 (2017)CrossRefGoogle Scholar
  10. 10.
    Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)Google Scholar
  11. 11.
    Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition: an unsupervised approach. In: ICCV (2011)Google Scholar
  12. 12.
    Griffin, G.S., Holub, A.D., Perona, P: Caltech-256 object category dataset. California Institute of Technology (2007)Google Scholar
  13. 13.
    Kan, M., Wu, J., Shan, S., Chen, X.: Domain adaptation for face recognition: targetize source domain bridged by common subspace. Int. J. Comput. Vis. 109(1–2), 94–109 (2014)CrossRefGoogle Scholar
  14. 14.
    Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: ICML, pp. 97–105 (2015)Google Scholar
  15. 15.
    Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint distribution adaptation. In: ICCV, pp. 2200–2207 (2014)Google Scholar
  16. 16.
    Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer joint matching for unsupervised domain adaptation. In: CVPR, pp. 1410–1417 (2014)Google Scholar
  17. 17.
    Long, M., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: NIPS (2016)Google Scholar
  18. 18.
    Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2011)CrossRefGoogle Scholar
  19. 19.
    Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)CrossRefGoogle Scholar
  20. 20.
    Rate, C., Retrieval, C.: Columbia object image library (coil-20). Computer(2011) Google Scholar
  21. 21.
    Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). Scholar
  22. 22.
    Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: CVPR (2018)Google Scholar
  23. 23.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Comput. Sci. (2014) Google Scholar
  24. 24.
    Sun, B., Feng, J., Saenko, K.: Correlation alignment for unsupervised domain adaptation. In: Csurka, G. (ed.) Domain Adaptation in Computer Vision Applications. ACVPR, pp. 153–171. Springer, Cham (2017). Scholar
  25. 25.
    Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR, pp. 1521–1528 (2011)Google Scholar
  26. 26.
    Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR, pp. 7167–7176 (2017)Google Scholar
  27. 27.
    Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: ICCV, pp. 4068–4076 (2017)Google Scholar
  28. 28.
    Wang, J., Feng, W., Chen, Y., Yu, H., Huang, M., Yu, P.S.: Visual domain adaptation with manifold embedded distribution alignment. In: ACM MM (2018)Google Scholar
  29. 29.
    Xu, Y., Fang, X., Wu, J., Li, X., Zhang, D.: Discriminative transfer subspace learning via low-rank and sparse representation. IEEE Trans. Image Process. 25(2), 850–863 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhang, J., Li, W., Ogunbona, P.: Joint geometrical and statistical alignment for visual domain adaptation. In: CVPR, pp. 5150–5158 (2017)Google Scholar
  31. 31.
    Zhang, L., Zhang, D.: Robust visual knowledge transfer via extreme learning machine-based domain adaptation. IEEE Trans. Image Process. 25(10), 4959–4973 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Microelectronics and Communication EngineeringChongqing UniversityChongqingChina

Personalised recommendations