Advertisement

Intellectual Property in Colombian Museums: An Application of Machine Learning

  • Jenny Paola Lis-GutiérrezEmail author
  • Álvaro Zerda Sarmiento
  • Amelec Viloria
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11936)

Abstract

The purpose of this research is to answer the following guiding question: how can the behavior of museum networks in Colombia be predicted with respect to the protection of intellectual property (copyright, confidential information and use of patents, domain names, industrial designs, use of trademarks) and the interaction of different types of proximity (geographical, organizational, relational, cognitive, cultural and institutional), based on the use of supervised learning algorithms?

Among the main findings are that the best learning algorithms to predict the behavior of networks, considering different target variables are the AdaBoost, the naive Bayes and CN2 rule inducer.

Keywords

Proximity Intellectual property Intellectual property management Museum Museum networks Machine learning 

References

  1. 1.
    Blanco-Valbuena, C.E., Bernal-Torres, C.A., Camacho, F., Díaz-Olaya, M.: Industrias Creativas y Culturales: Estudio desde el Enfoque de la Gestión del Conocimiento. Información tecnológica 29(3), 15–28 (2018)CrossRefGoogle Scholar
  2. 2.
    Balland, P.-A., Boschma, R., Frenken, K.: Proximity and innovation: from statics to dynamics. Reg. Stud. 49(6), 907–920 (2015)CrossRefGoogle Scholar
  3. 3.
    Lis-Gutiérrez, J.P.: La economía de la proximidad en la última década. Criterio Libre 14(25), 247–269 (2016)CrossRefGoogle Scholar
  4. 4.
    Torre, A.: Proximity relations at the heart of territorial development processes: from clusters, spatial conflicts and temporary geographical proximity to territorial governance. In: Torre, A., Wallet, F. (eds.) Regional Development and Proximity Relations, pp. 94–134. NRA – Agroparistech, París (2014)Google Scholar
  5. 5.
    Torre, A.: La figure du réseau: Dimensions spatiales et organisationnelles. Geographie Economie Societe 18(4), 455–469 (2016)Google Scholar
  6. 6.
    Wang, J., Liu, X., Wei, Y., Wang, C.: Cultural proximity and local firms’ catch up with multinational enterprises. World Dev. 60, 1–13 (2014)CrossRefGoogle Scholar
  7. 7.
    Talbot, D.: La dimension politique dans l’approche de la proximité. Géographie Economie Société 22(2), 125–144 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Talbot, D.: Institutions, organisations et espace: les formes de la proximité. Habilitation à diriger des recherches. Université Montesquieu Bordeaux IV (2011)Google Scholar
  9. 9.
    Beaugency, A., Talbot, D.: Cognitive proximity and knowledge spillover in the avionics industry: an analysis from patents and scientific publications. Innovations 55(1), 223–246 (2018)CrossRefGoogle Scholar
  10. 10.
    Pantalony, R.E.: Managing Intellectual Property for Museums. WIPO, Ginebra (2013)Google Scholar
  11. 11.
    Lis-Gutiérrez, J.P., Viloria, A., Gaitán-Angulo, M., Balaguera, M.I., Rodríguez, P.A.: Museums and management of intellectual property. J. Control Theory Appl. 9(44), 457–462 (2016)Google Scholar
  12. 12.
    Departamento Nacional de Planeación: Bases del plan nacional de desarrollo 2018–2022 pacto por Colombia. DNP, Bogotá (2019)Google Scholar
  13. 13.
    Yang, Z., Shi, Y., Li, Y.: Analysis of intellectual property cooperation behavior and its simulation under two types of scenarios using evolutionary game theory. Comput. Ind. Eng. 125, 739–750 (2018)CrossRefGoogle Scholar
  14. 14.
    García Galván, R.: Patentamiento universitario e innovación en México, país en desarrollo: teoría y política. Revista de la educación superior 46(184), 77–96 (2017)CrossRefGoogle Scholar
  15. 15.
    Holgersson, M., Tietze, F.: Sharing innovative and best-practice approaches for teaching intellectual property management: a workshop report. World Patent Inf. 49, 75–76 (2017)CrossRefGoogle Scholar
  16. 16.
    Yue, X.P.: Behavior of inter-enterprises patent portfolio for different market structure. Technol. Forecast. Soc. Change 120, 24–31 (2017)CrossRefGoogle Scholar
  17. 17.
    Gargate, G., Momaya, K.S.: Intellectual property management system: develop and self-assess using IPM model. World Patent Inf. 52, 29–41 (2018)CrossRefGoogle Scholar
  18. 18.
    Jeong, Y., Park, I., Yoon, B.: Identifying emerging Research and Business Development (R&BD) areas based on topic modeling and visualization with intellectual property right data. Technol. Forecast. Soc. Change 146, 655–672 (2018)CrossRefGoogle Scholar
  19. 19.
    Domínguez, M.M., Rodríguez, I.G., Pérez, M.G., Almeida, G.C., Velázquez, Y.T.: Metodología de gestión de la propiedad intelectual en los proyectos de ciencia, tecnología e innovación. Revista de Ciencias Médicas de Pinar del Río 22(6), 1090–1102 (2018)Google Scholar
  20. 20.
    Erickson, K.: Can creative firms thrive without copyright? Value generation and capture from private-collective innovation. Bus. Horiz. 61(5), 699–709 (2018)CrossRefGoogle Scholar
  21. 21.
    Greco, M., Grimaldi, M., Cricelli, L.: Benefits and costs of open innovation: the BeCO framework. Technol. Anal. Strateg. Manag. 31(1), 53–66 (2019)CrossRefGoogle Scholar
  22. 22.
    De Beer, J., McCarthy, I.P., Soliman, A., Treen, E.: Click here to agree: managing intellectual property when crowdsourcing solutions. Bus. Horiz. 60(2), 207–217 (2017)CrossRefGoogle Scholar
  23. 23.
    Stobo, V., Erickson, K., Bertoni, A., Guerrieri, F.: Current best practices among cultural heritage institutions when dealing with copyright orphan works and analysis of crowdsourcing options. EnDOW (2018)Google Scholar
  24. 24.
    Rosales, R., et al.: Modelling the interaction levels in HCI using an intelligent hybrid system with interactive agents: a case study of an interactive museum exhibition module in Mexico. Appl. Sci. 8(3), 446 (2018)CrossRefGoogle Scholar
  25. 25.
    Charalampos, G., Dimitrios, C., Georgios, P., Tzoumanika, A.: Enhanced digital cultural experience. In: 2017 8th International Conference on Information, Intelligence, Systems & Applications (IISA), pp. 1–5. IEEE (2017)Google Scholar
  26. 26.
    Belhi, A., Bouras, A.: Towards a multimodal classification of cultural heritage. In: Qatar Foundation Annual Research Conference Proceedings, vol. 2018, no. 3, p. ICTPD1010. HBKU Press, Qatar (2018)Google Scholar
  27. 27.
    Yasser, A.M., Clawson, K., Bowerman, C.: Saving cultural heritage with digital make-believe: machine learning and digital techniques to the rescue. In: Proceedings of the 31st British Computer Society Human Computer Interaction Conference, p. 97. BCS Learning & Development Ltd. (2017)Google Scholar
  28. 28.
    Owens, T.: We have interesting problems: some applied grand challenges from digital libraries, archives and museums. In: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries, p. 1. ACM (2018)Google Scholar
  29. 29.
    Nemade, R., Nitsure, A., Hirve, P., Mane, S.B.: Detection of forgery in art paintings using machine learning. Int. J. Innov. Res. Sci. Eng. Technol. 6(5), 8681–8692 (2017)Google Scholar
  30. 30.
    Forrester-Sellers, J., Velasco, A., Pickering, R., Diaz, J.C.: Classifying ancient west Mexican ceramic figures using three-dimensional modelling and machine learning. In: Proceedings of the Conference on Electronic Visualisation and the Arts, pp. 19–24. BCS Learning & Development Ltd. (2017)Google Scholar
  31. 31.
    Majd, M., Safabakhsh, R.: Impact of machine learning on improvement of user experience in museums. In: Artificial Intelligence and Signal Processing Conference (AISP), pp. 195–200. IEEE (2017)Google Scholar
  32. 32.
    Clecko, B.: Examining the impact of artificial intelligence in museums. Museums and the Web. MW17 (2017)Google Scholar
  33. 33.
    Guadamuz, A.: La inteligencia artificial y el derecho de autor. Revista OMPI, 5 (2017)Google Scholar
  34. 34.
    Li, X., Duan, B.: Organizational microblogging for event marketing: a new approach to creative placemaking. Int. J. Urban Sci. 22(1), 59–79 (2018)CrossRefGoogle Scholar
  35. 35.
    Demsar, J., et al.: Orange: data mining toolbox in Python. J. Mach. Learn. Res. 14(1), 2349–2353 (2013)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidad Nacional de ColombiaBogotáColombia
  2. 2.Universidad de la CostaBarranquillaColombia

Personalised recommendations