Advertisement

Semantic Segmentation for Prohibited Items in Baggage Inspection

  • Jiuyuan An
  • Haigang ZhangEmail author
  • Yue Zhu
  • Jinfeng Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11935)

Abstract

The X-ray screening system is crucial to protecting the safety of public spaces. However, automated detection in baggage inspection is still far from practical application. Most detection tasks rely mainly on humans. In this paper, the detection of prohibited items is regarded as a semantic segmentation task. Considering some characters of security imageries, we propose a segmentation net with novel dual attention, which could capture richer features for refining the segmentation results. Our model could not only automatically recognize the class of prohibited items but also locate prohibited items in baggage. It could facilitate the security staffs to carry out inspection. To validate the effectiveness of our proposed model, extensive experiments have been conducted on the real X-ray security imageries datasets. The experimental results show the net achieves super performance (mIoU of 0.683).

Keywords

Prohibited items Semantic segmentation Attention 

References

  1. 1.
    Akcay, S., Kundegorski, M.E., Willcocks, C.G., Breckon, T.P.: Using deep convolutional neural network architectures for object classification and detection within x-ray baggage security imagery. IEEE Trans. Inf. Forensics Secur. 13(9), 2203–2215 (2018)CrossRefGoogle Scholar
  2. 2.
    Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)CrossRefGoogle Scholar
  3. 3.
    Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv:1412.7062 (2014)
  4. 4.
    Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)CrossRefGoogle Scholar
  5. 5.
    Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
  6. 6.
    Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01234-2_49CrossRefGoogle Scholar
  7. 7.
    Fu, J., Liu, J., Tian, H., Fang, Z., Lu, H.: Dual attention network for scene segmentation. arXiv preprint arXiv:1809.02983 (2018)
  8. 8.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  9. 9.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  10. 10.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)Google Scholar
  11. 11.
    Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025 (2015)
  12. 12.
    Mery, D., Svec, E., Arias, M., Riffo, V., Saavedra, J.M., Banerjee, S.: Modern computer vision techniques for x-ray testing in baggage inspection. IEEE Trans. Syst. Man Cybern. Syst. 47(4), 682–692 (2017)CrossRefGoogle Scholar
  13. 13.
    Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters-improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4353–4361 (2017)Google Scholar
  14. 14.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  15. 15.
    Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)Google Scholar
  16. 16.
    Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)Google Scholar
  17. 17.
    Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)Google Scholar
  18. 18.
    Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01234-2_1CrossRefGoogle Scholar
  19. 19.
    Xu, M., Zhang, H., Yang, J.: Prohibited item detection in airport x-ray security images via attention mechanism based CNN. In: Lai, J.-H., et al. (eds.) PRCV 2018. LNCS, vol. 11257, pp. 429–439. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03335-4_37CrossRefGoogle Scholar
  20. 20.
    Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jiuyuan An
    • 1
  • Haigang Zhang
    • 2
    Email author
  • Yue Zhu
    • 1
  • Jinfeng Yang
    • 2
  1. 1.Tianjin Key Lab for Advanced Signal ProcessingCivil Aviation University of ChinaTianjinChina
  2. 2.Institute of Applied Artificial Intelligence of the Guangdong-Hong Kong-Macao Greater Bay AreaShenzhen PolytechnicShenzhenChina

Personalised recommendations