A Hierarchical Student’s t-Distributions Based Unsupervised SAR Image Segmentation Method
Conference paper
First Online:
Abstract
We introduce a finite mixture mode using hierarchical Student’s distributions, called hierarchical Student’s t-mixture model (HSMM), for SAR images segmentation. The main advantages of the proposed method are as follows: first, in HSMM, the clustering problem is reformulated as a set of sub-clustering problems each of which can be solved by the traditional SMM algorithm. Second, a novel image content-adaptive mean template is introduced into HSMM to increase its robustness. Third, an expectation maximization algorithm is utilized for HSMM parameters estimation. Finally, experiments show that the HSMM is effective and robust.
Keywords
SAR image segmentation Hierarchical student’s-t distributions Structure tensor Nonlocally weighted mean templateReferences
- 1.Gemme, L., Dellepiane, S.G.: An automatic data-driven method for SAR image segmentation in sea surface analysis. IEEE Trans. Geosci. Remote Sens. 56(5), 2633–2646 (2018)Google Scholar
- 2.Guo, Y., Jiao, L., Wang, S., Liu, F., Hua, W.: Fuzzy-superpixels for polarimetric SAR images classification. IEEE Trans. Fuzzy Syst. 26(5), 2846–2860 (2018)CrossRefGoogle Scholar
- 3.Zhang, D., Meng, D., Han, J.: Co-saliency detection via a self-paced multiple-instance learning framework. IEEE Trans. Pattern Anal. Mach. Intell. 39(5), 865–878 (2017)CrossRefGoogle Scholar
- 4.Wang, F., Wu, Y., Zhang, P., Li, M.: Synthetic aperture radar image segmentation using non-linear diffusion-based hierarchical triplet Markov fields model. IET Image Process. 11(12), 1302–1309 (2017)CrossRefGoogle Scholar
- 5.Akbarizadeh, G., Rahmani, M.: Unsupervised feature learning based on sparse coding and spectral clustering for segmentation of synthetic aperture radar images. IET Comput. Vis. 9(5), 629–638 (2015)CrossRefGoogle Scholar
- 6.Luo, S., Tong, L., Chen, Y.: A multi-region segmentation method for SAR images based on the Multi-texture model. IEEE Trans. Image Process. 27(5), 2560–2574 (2018)MathSciNetCrossRefGoogle Scholar
- 7.Thangarajah, A., Wu, Q.M., Yang, J.Y.: Fusion-based foreground enhancement for background subtraction using multivariate multi-model Gaussian distribution. Inf. Sci. 430, 414–431 (2018)Google Scholar
- 8.Nguyen, T.M., Wu, Q.M.J.: Robust student’s-t mixture model with spatial constraints and its application in medical image segmentation. IEEE Trans. Med. Imaging 31(1), 103–116 (2012)CrossRefGoogle Scholar
- 9.Peel, D., McLachlan, G.: Robust mixture modeling using the t-distribution. Stat. Comput. 10(4), 339–348 (2000)CrossRefGoogle Scholar
- 10.Zhang, H., Wu, Q.M.J., Nguyen, T.M.: A robust fuzzy algorithm based on student’s t-distribution and mean template for image segmentation application. IEEE Signal Process. Lett. 20(2), 117–120 (2013)CrossRefGoogle Scholar
- 11.Clifford, P.: Markov random fields in statistics. Disord. Phys. Syst. A 14(1), 128–135 (1990)MathSciNetzbMATHGoogle Scholar
- 12.Sanjay-Gopal, S., Hebert, T.J.: Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans. Image Process. 7(7), 1014–1028 (1998)CrossRefGoogle Scholar
- 13.Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)CrossRefGoogle Scholar
- 14.Michael, I., Robert, A.: Hierarchical mixtures of experts and the EM algorithm. Neural Comput. 6(2), 181–214 (1994)CrossRefGoogle Scholar
- 15.Chatzis, S.P., Kosmopoulos, D.I., Varvarigou, T.A.: Robust sequential data modeling using an outlier tolerant hidden Markov model. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1657–1669 (2009)CrossRefGoogle Scholar
- 16.Gerogiannis, D., Nikou, C., Likas, A.: The mixtures of student’s t-distributions as a robust framework for rigid registration. Image Vis. Comput. 27(9), 1285–1294 (2009)CrossRefGoogle Scholar
- 17.Zhang, H., Wu, Q.M.J., Nguyen, T.M.: Incorporating mean template into finite mixture model for image segmentation. IEEE Trans. Neural Netw. Learn. Syst. 24(2), 328–335 (2013)CrossRefGoogle Scholar
- 18.Blekas, K., Likas, A., Galatsanos, N.P., Lagaris, I.E.: A spatially constrained mixture model for image segmentation. IEEE Trans. Neural Netw. 16(2), 494–498 (2005)CrossRefGoogle Scholar
- 19.Zhang, H., Wu, Q.M.J., Nguyen, T.M., Sun, X.: Synthetic aperture radar image segmentation by modified student’s t-mixture model. IEEE Trans. Geosci. Remote Sens. 52(7), 4391–4403 (2014)CrossRefGoogle Scholar
- 20.Kong, L., Zhang, H., Zheng, Y., Chen, Y., Zhu, J., Wu, Q.M.J.: Image segmentation using a hierarchical student’s-t mixture model. IET Image Process. 11(11), 1094–1102 (2017)CrossRefGoogle Scholar
- 21.Estellers, V., Soatto, S., Bresson, X.: Adaptive regularization with the structure tensor. IEEE Trans. Image Process. 24(6), 1777–1790 (2015)MathSciNetCrossRefGoogle Scholar
- 22.Zheng, Y., Beon, J., Zhang, W., Chen, Y.: Adaptively determining regularization parameters in nonlocal total variation regularization for image denoising. Electron. Lett. 51(2), 144–145 (2015)CrossRefGoogle Scholar
- 23.Chatzis, S.P., Varvarigou, T.A.: A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation. IEEE Trans. Fuzzy Syst. 16(5), 1351–1361 (2008)CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019