Advertisement

Seamless V2I Communication in HetNet: State-of-the-Art and Future Research Directions

  • Pranav Kumar SinghEmail author
  • Roshan Singh
  • Sunit Kumar Nandi
  • Kayhan Zrar Ghafoor
  • Sukumar Nandi
Chapter

Abstract

Vehicle-to-infrastructure (V2I) communication enables a variety of applications and services, including safety, infotainment, mobility, payment, and so on, to be accessed and consumed. However, V2I requires seamless connectivity without having to worry about transitions between and across heterogeneous networks. In the next generation 5G heterogeneous networks (HetNet), which is a combination of multi-tier and multi-radio access technologies (RAT), the main challenges for V2I communication are having better network discovery, selection, and implementation of fast, seamless, and reliable vertical handover; maintaining QoS; and providing better quality of experience (QoE). To meet these challenges, considerable research contributions exist, and various generic solutions have also been proposed. In this chapter, the authors discuss the state-of-the-art of such technologies and V2I communication that consists of available radio access technologies, handover management, access network discovery and selection function (ANDSF), and media-independent handover (MIH)-based standard solutions for vertical handover. Besides, the chapter presents associated challenges with these technologies and highlights the possible research directions on multi-path technologies, SDN-based solutions, hybrid solutions, and 5G-enabled internet of vehicles (IoV). Primarily, the chapter discusses seamless V2I connectivity in HetNet and presents the state-of-the-art and future research directions in this domain.

Keywords

IoV IoT ANDSF MIH DSRC HetNet Radio access network RAT Handover 5G V2X MPTCP MPIP WAVE WLAN 

References

  1. 1.
    Dey KC, Rayamajhi A, Chowdhury M, Bhavsar P, Martin J (2016) Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network–performance evaluation. Transp Res Part C: Emerg Technol 68:168–184CrossRefGoogle Scholar
  2. 2.
    Zheng K, Zheng Q, Chatzimisios P, Xiang W, Zhou Y (2015) Heterogeneous vehicular networking: a survey on architecture, challenges, and solutions. IEEE Commun Surv Tutor 17(4):2377–2396CrossRefGoogle Scholar
  3. 3.
    Kenney JB (2011) Dedicated short-range communications (DSRC) standards in the United States. Proc IEEE 99(7):1162–1182CrossRefGoogle Scholar
  4. 4.
    Uzcátegui RA, De Sucre AJ, Acosta-Marum G (2009) Wave: a tutorial. IEEE Commun Mag 47(5):126–133CrossRefGoogle Scholar
  5. 5.
    Osseiran A, Monserrat JF, Marsch P (eds) (2016) 5G mobile and wireless communications technology. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Sjoberg K, Andres P, Buburuzan T, Brakemeier A (2017) Cooperative intelligent transport systems in Europe: current deployment status and outlook. IEEE Veh Technol Mag 12(2):89–97CrossRefGoogle Scholar
  7. 7.
    Erl T, Mahmood Z, Puttini R (2013) Cloud computing: concepts, technology & architecture. Pearson Education, IndiaGoogle Scholar
  8. 8.
    Mueck M, Ivanov V, Choi S, Kim J, Ahn C, Yang H, Piipponen A (2012) Future of wireless communication: radioapps and related security and radio computer framework. IEEE Wirel Commun 19(4):9–16CrossRefGoogle Scholar
  9. 9.
    IEEE (2019) IEEE Std 802.1X, I: IEEE standard for port-based network access controlGoogle Scholar
  10. 10.
    IEEE (2019) IEEE Std 802.11i, IEEE standard for wireless LAN medium access control (MAC) and physical layer specifications: amendment 6: medium access control security enhancementsGoogle Scholar
  11. 11.
    IEEE (2019) IEEE Std 802.11r/D01.0, draft amendment to standard for information technology—telecommunications and information exchange between systems—LAN/MAN specific requirements part 11: wireless medium access control (MAC) and physical layer specifications: amendment 8: fast BSS transitionGoogle Scholar
  12. 12.
    Singh PK, Vij P, Vyas A, Nandi SK, Nandi S (2019) Elliptic curve cryptography based mechanism for secure wi-fi connectivity. In: International conference on distributed computing and internet technology, January 2019. Springer, Cham, pp 422–439Google Scholar
  13. 13.
    IEEE (2019) IEEE 802.11u-2011—IEEE standard for information technology-telecommunications and information exchange between systems-local and metropolitan networks-specific requirements-part II: wireless lan medium access control (MAC) and physical layer (PHY) specifications: amendment 9: interworking with external networksGoogle Scholar
  14. 14.
    IEEE (2019) IEEE Std 802.11-2012 IEEE standard for information technology–telecommunications and information exchange between systems–local and metropolitan area networks–specific requirements–part 11: wireless lan medium access control (MAC) and physical layer (PHY) specifications amendment 6: wireless access in vehicular environments, IEEE Std 802 (11)Google Scholar
  15. 15.
    Singh PK, Nandi SK, Nandi S (2019) A tutorial survey on vehicular communication state of the art, and future research directions. Veh Commun 100164Google Scholar
  16. 16.
    Abboud K, Omar HA, Zhuang W (2016) Interworking of DSRC and cellular network technologies for V2X communications: a survey. IEEE Trans Veh Technol 65(12):9457–9470CrossRefGoogle Scholar
  17. 17.
    IEEE (2019) IEEE P802.11-Task group BD (NGV) meeting update. http://www.ieee802.org/11/Reports/tgbd_update.htm. Accessed 1 May 2019
  18. 18.
    Naik G, Choudhury B, Park J (2019) IEEE 802.11bd & 5G NR V2X: evolution of radio access technologies for V2X communications. CoRR https://arxiv.org/abs/1903.08391. Accessed 1 May 2019
  19. 19.
    Evolved Universal Terrestrial Radio Access (E-UTRA) (2009) LTE physical layer; general description, 3GPP TR 36.201Google Scholar
  20. 20.
    Araniti G, Campolo C, Condoluci M, Iera A, Molinaro A (2013) LTE for vehicular networking: a survey. IEEE Commun Mag 51(5):148–157CrossRefGoogle Scholar
  21. 21.
    GPP (2019) 3GPP TR 36.885, Study on LTE-based V2X services (Release 14), 3GPP technical specification group radio access network, v14.0.0, June 2016Google Scholar
  22. 22.
    Papathanassiou A, Khoryaev A (2017) Cellular V2X as the essential enabler of superior global connected transportation services. IEEE 5G Tech Focus 1(2)Google Scholar
  23. 23.
    GPP (2019) RP-181480: new SID: study on NR V2X. In: Proceedings of 3GPP planery meeting, vol 80, pp 1–10, June 2018Google Scholar
  24. 24.
    Naik G, Choudhury B, Park JM (2019) IEEE 802.11 bd & 5G NR V2X: evolution of radio access technologies for V2X communications. IEEE AccessGoogle Scholar
  25. 25.
    Márquez-Barja J, Calafate CT, Cano JC, Manzoni P (2011) An overview of vertical handover techniques: algorithms, protocols and tools. Comput Commun 34(8):985–997CrossRefGoogle Scholar
  26. 26.
    Chan PM, Sheriff RE, Hu YF, Conforto P, Tocci C (2001) Mobility management incorporating fuzzy logic for a heterogeneous IP environmentGoogle Scholar
  27. 27.
    Kassar M, Kervella B, Pujolle G (2008) An overview of vertical handover decision strategies in heterogeneous wireless networks. Comput Commun 31(10):2607–2620CrossRefGoogle Scholar
  28. 28.
    Zdarsky FA, Schmitt JB (2004) Handover in mobile communication networks: who is in control anyway? In: Proceedings. 30th Euromicro conference, August 2004. IEEE, pp 205–212Google Scholar
  29. 29.
    Mishra A, Shin M, Arbaugh W (2003) An empirical analysis of the IEEE 802.11 MAC layer handoff process. ACM SIGCOMM Comput Commun Rev 33(2):93–102CrossRefGoogle Scholar
  30. 30.
    Shin S, Forte AG, Rawat AS, Schulzrinne H (2004) Reducing MAC layer handoff latency in IEEE 802.11 wireless LANs. In: Proceedings of the second international workshop on mobility management & wireless access protocols, October 2004. ACM, New York, pp 19–26Google Scholar
  31. 31.
    Singh PK, Chattopadhyay S, Bhale P, Nandi S (2018) Fast and secure handoffs for v2i communication in smart city wi-fi deployment. In: International conference on distributed computing and internet technology, January 2018. Springer, Cham, pp 189–204Google Scholar
  32. 32.
    Dutta A, Famolari D, Das S, Ohba Y, Fajardo V, Taniuchi K, Schulzrinne H (2008) Media-independent pre-authentication supporting secure interdomain handover optimization. IEEE Wirel Commun 15(2):55–64CrossRefGoogle Scholar
  33. 33.
    Johnson D, Perkins C, Arkko J (2004) RFC 3775: mobility support in IPv6. IETF, June 2004, pp 1–165Google Scholar
  34. 34.
    Koodli R (2005) Fast handovers for mobile IPv6 (No. RFC 4068)Google Scholar
  35. 35.
    Soliman H, Castelluccia C, El Malki K, Bellier L (2005) Hierarchical mobile IPv6 mobility management (HMIPv6) (No. RFC 4140)Google Scholar
  36. 36.
    Al-Hashimi HN, Bakar KA, Ghafoor KZ (2010) Inter-domain proxy mobile IPv6 based vehicular network. Netw Protoc Algorithms 2(4):1–15Google Scholar
  37. 37.
    Benamar N (2017) Transmission of IPv6 packets over IEEE 802.11 networks in mode outside the context of a basic service set (IPv6-over-80211ocb)Google Scholar
  38. 38.
    Chekkouri AS, Ezzouhairi A, Pierre S (2015) Connected vehicles in an intelligent transport system. In: Vehicular communications and networks. Woodhead Publishing, Cambridge, pp 193–221CrossRefGoogle Scholar
  39. 39.
    Alexandris K, Nikaein N, Knopp R, Bonnet C (2016) Analyzing x2 handover in lte/lte-a. In: 2016 14th international symposium on modeling and optimization in mobile, ad hoc, and wireless networks (WiOpt), May 2016. IEEE, pp 1–7Google Scholar
  40. 40.
    Gódor G, Jakó Z, Knapp Á, Imre S (2015) A survey of handover management in LTE-based multi-tier femtocell networks: requirements, challenges and solutions. Comput Netw 76:17–41CrossRefGoogle Scholar
  41. 41.
    Ndashimye E, Ray SK, Sarkar NI, Gutiérrez JA (2017) Vehicle-to-infrastructure communication over multi-tier heterogeneous networks: a survey. Comput Netw 112:144–166CrossRefGoogle Scholar
  42. 42.
    Lucent A (2009) The LTE network architecture—a comprehensive tutorial. Strategic WhitepaperGoogle Scholar
  43. 43.
    GPP TS 38.300 NR; NR and NG-RAN overall description, stage 2, (release 15), April 2019Google Scholar
  44. 44.
    ETSITS124312 (2015) Universal mobile telecommunications system (UMTS), LTE; access network discovery and selection functions (ANDSF) management object (MO), in 3GPP TS 24.312 version 12.10.0 Release 12, October 2015Google Scholar
  45. 45.
    De La Oliva A, Banchs A, Soto I, Melia T, Vidal A (2008) An overview of IEEE 802.21: media-independent handover services. IEEE Wirel Commun 15(4):96–103Google Scholar
  46. 46.
    ETSITS124312 (2015) Universal mobile telecommunications system (UMTS), LTE; access network discovery and selection functions (ANDSF) management object (MO), in 3GPP TS 24.312 version 12.12.0 Release 12.12, October 2015Google Scholar
  47. 47.
    Pasca TV, Tamma BR (2019) Traffic steering in radio level integration of LTE and Wi-Fi networks. Doctoral dissertation, Indian institute of technology HyderabadGoogle Scholar
  48. 48.
    3GPP (1999) Evolved universal terrestrial radio access (E-UTRA); LTE-WLAN radio level integration using Ipsec tunnel (LWIP) encapsulation; protocol specification. Technical report 29.060Google Scholar
  49. 49.
    SaMOG (2019) Study on S2a mobility based on GPRS tunnelling protocol (GTP) and wireless local area network (WLAN) access to the enhanced packet core (EPC) network (SaMOG). Technical report 23.852, 2013Google Scholar
  50. 50.
    Network-Based IP (2015) Flow mobility (NBIFOM)Google Scholar
  51. 51.
    De la Oliva A, Melia T, Banchs A, Soto I, Vidal A (2008) IEEE 802.21 (media independent handover services) overview. Interface 3:3GPP2Google Scholar
  52. 52.
    Xing P et al (2013) Multi-RAT network architecture, wireless world research forum, no. 9, November 2013Google Scholar
  53. 53.
    Haziza N, Kassab M, Knopp R, Härri J, Kaltenberger F, Agostini P, Aniss H (2013) Multi-technology vehicular cooperative system based on Software Defined Radio (SDR). In: International workshop on communication technologies for vehicles, May 2016. Springer, Berlin, pp 84–95Google Scholar
  54. 54.
    Ku I, Lu Y, Gerla M, Gomes RL, Ongaro F, Cerqueira E (2014) Towards software-defined VANET: architecture and services. In: Med-Hoc-Net, June 2014, pp 103–110Google Scholar
  55. 55.
    Zheng K, Hou L, Meng H, Zheng Q, Lu N, Lei L (2016) Soft-defined heterogeneous vehicular network: architecture and challenges. IEEE Netw 30(4):72–80CrossRefGoogle Scholar
  56. 56.
    He Z, Cao J, Liu X (2016) SDVN: enabling rapid network innovation for heterogeneous vehicular communication. IEEE Netw 30(4):10–15CrossRefGoogle Scholar
  57. 57.
    Stewart RR (2007) Stream control transmission protocol, September 2007. https://rfc-editor.org/rfc/rfc4960.txt. Accessed June 2019
  58. 58.
    Ford A, Raiciu C, Handley M, Barre S, Iyengar J (2011) Architectural guidelines for multipath TCP development. IETF, Inf RFC 6182:2070–1721Google Scholar
  59. 59.
    De Coninck Q, Bonaventure O (2017) Multipath quic: design and evaluation. In: Proceedings of the 13th international conference on emerging networking experiments and technologies, November 2017. ACM, New York, pp 160–166Google Scholar
  60. 60.
    Mena J, Bankole P, Gerla M (2017) Multipath tcp on a vanet: a performance study. ACM SIGMETRICS Perform Eval Rev 45(1):39–40. ACMCrossRefGoogle Scholar
  61. 61.
    Singh PK, Sharma S, Nandi SK, Nandi S (2019) Multipath TCP for V2I communication in SDN controlled small cell deployment of smart city. Veh Commun 15:1–15Google Scholar
  62. 62.
    Williams N, Abeysekera P, Dyer N, Vu H, Armitage G (2014) Multipath TCP in vehicular to infrastructure communications. Technical report 140828A Swinburne University of Technology MelbourneGoogle Scholar
  63. 63.
    Huang CM, Lin MS (2010) RG-SCTP: using the relay gateway approach for applying SCTP in vehicular networks. In: The IEEE symposium on computers and communications, June 2010. IEEE, pp 139–144Google Scholar
  64. 64.
    Katsaros K, Dianati M (2017) A cost-effective SCTP extension for hybrid vehicular networks. J Commun Inf Netw 2(2):18–29CrossRefGoogle Scholar
  65. 65.
    Mogensen RS, Reliability enhancement for LTE using MPQUIC in a mixed traffic scenarioGoogle Scholar
  66. 66.
    Ferrus R, Sallent O, Agusti R (2010) Interworking in heterogeneous wireless networks: comprehensive framework and future trends. IEEE Wirel Commun 17(2):22–31CrossRefGoogle Scholar
  67. 67.
    Barooah M, Chakraborty S, Nandi S, Kotwal D (2013) An architectural framework for seamless handoff between IEEE 802.11 and UMTS networks. Wirel Netw 19(4):411–429CrossRefGoogle Scholar
  68. 68.
    Lampropoulos G, Passas N, Kaloxylos A, Merakos L (2007) A flexible UMTS/WLAN architecture for improved network performance. Wirel Pers Commun 43(3):889–906CrossRefGoogle Scholar
  69. 69.
    Phiri FA, Murthy MBR (2007) WLAN-GPRS tight coupling based interworking architecture with vertical handoff support. Wirel Pers Commun 40(2):137–144CrossRefGoogle Scholar
  70. 70.
    Li Y, Lee KW, Kang JE, Cho YZ (2007) A novel loose coupling interworking scheme between UMTS and WLAN systems for multihomed mobile stations. In: Proceedings of the 5th ACM international workshop on mobility management and wireless access, October 2007. ACM, pp 155–158Google Scholar
  71. 71.
    Kassar M, Achour A, Kervella B (2008) A mobile-controlled handover management scheme in a loosely-coupled 3G-WLAN interworking architecture. In: 2008 1st IFIP wireless days, November 2008. IEEE, pp 1–5Google Scholar
  72. 72.
    Wischik D, Raiciu C, Greenhalgh A, Handley M (2011) Design, implementation and evaluation of congestion control for multipath TCP. In: NSDI, March 2011, vol 11, pp 8–8Google Scholar
  73. 73.
    Barré S, Bonaventure O, Raiciu C, Handley M (2011) Experimenting with multipath TCP. ACM SIGCOMM Comput Commun Rev 41(4):443–444CrossRefGoogle Scholar
  74. 74.
    Sun L, Tian G, Zhu G, Liu Y, Shi H, Dai D (2018) Multipath IP routing on end devices: motivation, design, and performance. In: 2018 IFIP networking conference (IFIP networking) and workshops, May 2018. IEEE, pp 1–9Google Scholar
  75. 75.
    Ghafoor KZ, Kong L, Rawat DB, Hosseini E, Sadiq AS (2018) Quality of service aware routing protocol in software-defined internet of vehicles. IEEE Internet Things J 6(2):2817–2828CrossRefGoogle Scholar
  76. 76.
    Mahmood A, Zhang WE, Sheng QZ (2019) Software-defined heterogeneous vehicular networking: the architectural design and open challenges. Future Internet 11(3):70CrossRefGoogle Scholar
  77. 77.
    Sadiq AS, Khan S, Ghafoor KZ, Guizani M, Mirjalili S (2018) Transmission power adaption scheme for improving IoV awareness exploiting: evaluation weighted matrix based on piggybacked information. Comput Netw 137:147–159CrossRefGoogle Scholar
  78. 78.
    Sadiq AS, Bakar KA, Ghafoor KZ, Lloret J (2013) Intelligent vertical handover for heterogeneous wireless network. In: Proceedings of the world congress on engineering and computer science, vol 2, pp 774–779, October 2013Google Scholar
  79. 79.
    Sadiq AS, Bakar KA, Ghafoor KZ, Lloret J, Khokhar R (2013) An intelligent vertical handover scheme for audio and video streaming in heterogeneous vehicular networks. Mob Netw Appl 18(6):879–895CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Pranav Kumar Singh
    • 1
    • 2
    Email author
  • Roshan Singh
    • 2
  • Sunit Kumar Nandi
    • 1
    • 3
  • Kayhan Zrar Ghafoor
    • 4
    • 5
  • Sukumar Nandi
    • 1
  1. 1.Department of CSEIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Department of CSECentral Institute of Technology KokrajharKokrajharIndia
  3. 3.Department of CSENIT Arunachal PradeshYupiaIndia
  4. 4.School of Mathematics and Computer ScienceUniversity of WolverhamptonWolverhamptonUK
  5. 5.Department of Software EngineeringSalahaddin UniversityErbilIraq

Personalised recommendations