Evaluating an AEF Swimming Microrobot Using a Hardware-in-the-loop Testbed

  • José Emilio TraverEmail author
  • Inés Tejado
  • Cristina Nuevo-Gallardo
  • Javier Prieto-Arranz
  • Miguel A. López
  • Blas M. Vinagre
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1093)


This paper studies the swimming and control effectiveness of a 4-link artificial eukaryotic flagellum (AEF) swimming microrobot through hardware-in-the-loop (HIL) experiments, which are executed in an environment characterized by high mechanical stress. The tested HIL experiment consists of a simulator of the robot, developed in the MATLAB/ Simulink environment, and a microcontroller Atmel ATmega32u4, where the control of the robot is programmed. Data exchange between the simulator and microcontroller is carried out through serial protocol via universal asynchronous receiver-transmitter (UART). For comparison purposes, two control strategies, namely fractional order proportional-derivative (PD\(^{\mu }\)) and integer order proportional-integral-derivative (PID) controllers, are considered for the robot to emulate a non-reciprocal motion. Two types of these controllers are implemented and evaluated.


Control HIL Microswimmer Robot Simscape Simulink Non-reciprocal motion 



This work has been supported in part by the Spanish Agencia Estatal de Investigación (AEI) under the project DPI2016-80547-R (Ministerio de Economía y Competitividad), in part by the Consejería de Economía e Infraestructuras (Junta de Extremadura) under the grant “Ayuda a Grupos de Investigación de Extremadura” (no. GR18159) and the project IB18109, and in part by the European Social Fund (FEDER, EU) and the European Regional Development Fund “A way to make Europe”. José Emilio Traver would like to thank the Ministerio de Educación, Cultura y Deporte its support through the scholarship no. FPU16/2045 of the FPU Program. Cristina Nuevo-Gallardo would like to thank University of Extremadura its support through the scholarship “Plan Propio de Iniciación a la Investigación, Desarrollo Tecnológico e Innovación 2018”.


  1. 1.
    Abadi, A., Kosa, G.: Piezoelectric beam for intrabody propulsion controlled by embedded sensing. IEEE/ASME Trans. Mechatron. 21(3), 1528–1539 (2016)CrossRefGoogle Scholar
  2. 2.
    Alouges, F., DeSimone, A., Giraldi, L., Zoppello, M.: Self-propulsion of slender micro-swimmers by curvature control: N-link swimmers. Int. J. Non-Linear Mech. 56, 132–141 (2013)CrossRefGoogle Scholar
  3. 3.
    Arrieta, O., Vilanova, R.: Simple PID tuning rules with guaranteed \(M_s\) robustness achievement. IFAC Proc. Volumes 44(1), 12042–12047 (2011)CrossRefGoogle Scholar
  4. 4.
    Bogue, R.: Miniature and microrobots: a review of recent developments. Ind. Rob. Int. J. 42(2), 98–102 (2015)CrossRefGoogle Scholar
  5. 5.
    Ceylan, H., Giltinan, J., Kozielski, K., Sitti, M.: Mobile microrobots for bioengineering applications. Lab Chip 17(10), 1705–1724 (2017)CrossRefGoogle Scholar
  6. 6.
    Diller, E., Sitti, M.: Micro-scale mobile robotics. Found. Trends® Rob. 2(3), 143–259 (2013)Google Scholar
  7. 7.
    Gray, J., Hancock, G.J.: The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32(4), 802–814 (1955)Google Scholar
  8. 8.
    Hancock, G.J.: The self-propulsion of microscopic organisms through liquids. Proc. R. Soc. London A Mathe. Phys. Eng. Sci. 217(1128), 96–121 (1953)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hariri, H., Bernard, Y., Razek, A.: A traveling wave piezoelectric beam robot. Smart Mater. Struct. 23(2), 025013 (2013)CrossRefGoogle Scholar
  10. 10.
    Hunter, I.W., Doukoglou, T.D., Lafontaine, S.R., Charette, P.G., Jones, L.A., Sagar, M.A., Mallinson, G.D., Hunter, P.J.: A teleoperated microsurgical robot and associated virtual environment for eye surgery. Presence Teleoper. Virtual Environ. 2(4), 265–280 (1993)CrossRefGoogle Scholar
  11. 11.
    Kósa, G., Jakab, P., Hata, N., Jólesz, F., Neubach, Z., Shoham, M., Zaaroor, M., Székely, G.: Flagellar swimming for medical micro robots: theory, experiments and application. In: Proceedings of the 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2008), pp. 258–263 (2008)Google Scholar
  12. 12.
    Lauga, E.: Life at high Deborah number. EPL (Europhys. Lett.) 86(6), 64001 (2009)CrossRefGoogle Scholar
  13. 13.
    Lighthill, M.J.: Note on the swimming of slender fish. J. Fluid Mech. 9, 305–317 (1960)MathSciNetCrossRefGoogle Scholar
  14. 14.
    López, M.A., Prieto, J., Traver, J.E., Tejado, I., Vinagre, B.M., Petrás, I.: Testing non reciprocal motion of a swimming flexible small robot with single actuation. In: Proceedings of the 19th International Carpathian Control Conference, pp. 312–317 (2018)Google Scholar
  15. 15.
    Mancha, E., Traver, J.E., Tejado, I., Prieto, J., Vinagre, B.M., Feliu, V.: Artificial flagellum microrobot. Design and simulation in COMSOL. In: Advances in Intelligent Systems and Computing, vol. 693, pp. 491–501. Springer, Heidelberg (2018)Google Scholar
  16. 16.
    Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J.: Microrobots for minimally invasive medicine. Ann. Rev. Biomed. Eng. 12, 55–85 (2010)CrossRefGoogle Scholar
  17. 17.
    Paprotny, I., Bergbreiter, S.: Small-scale robotics: an introduction. In: Small-Scale Robotics. From Nano-to-Millimeter-Sized Robotic Systems and Applications, vol. 8336, pp. 1–15. Springer, Heidelberg (2014)Google Scholar
  18. 18.
    Prieto-Arranz, J., Traver, J.E., López, M.A., Tejado, I., Vinagre, B.M.: Study in COMSOL of the generation of traveling waves in an AEF robot by piezoelectric actuation. Actas de las XXXIX Jornadas de Automática, Badajoz, 5–7 de Septiembre de 2018, pp. 748–755 (2018)Google Scholar
  19. 19.
    Proakis, J., Manolakis, D.: Digital Signal Processing: Pearson New International Edition. Pearson Education Limited (2013)Google Scholar
  20. 20.
    Purcell, E.M.: Life at low Reynolds number. Am. J. Phys. 45(1), 3–11 (1977)CrossRefGoogle Scholar
  21. 21.
    Raz, O., Avron, J.E.: Swimming, pumping and gliding at low Reynolds numbers. New J. Phys. 9, 437 (2007)CrossRefGoogle Scholar
  22. 22.
    Sitti, M.: Microscale and nanoscale robotics systems: characteristics, state of the art, and grand challenges. IEEE Rob. Autom. Mag. 14(1), 53–60 (2007)CrossRefGoogle Scholar
  23. 23.
    Tejado, I., Serrano, J., Pérez, E., Torres, D., Vinagre, B.M.: Low-cost hardware-in-the-loop testbed of a mobile robot to support learning in automatic control and robotics. IFAC-PapersOnLine 49(6), 242–247 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Traver, J.E., Tejado, I., Prieto-Arranz, J., Nuevo-Gallardo, C., Vinagre, B.M.: Improved locomotion of an AEF swimming robot using fractional order control. In: IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC 2019) (Accept) (2019)Google Scholar
  25. 25.
    Traver, J.E., Tejado, I., Vinagre, B.M.: A comparative study of planar waveforms for propulsion of a joined artificial bacterial flagella swimming robot. In: Proceedings of the 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT 2017), pp. 550–555 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • José Emilio Traver
    • 1
    Email author
  • Inés Tejado
    • 1
  • Cristina Nuevo-Gallardo
    • 1
  • Javier Prieto-Arranz
    • 1
    • 2
  • Miguel A. López
    • 1
  • Blas M. Vinagre
    • 1
  1. 1.Industrial Engineering SchoolUniversity of ExtremaduraBadajozSpain
  2. 2.School of Industrial EngineeringUniversity of Castilla-La ManchaCiudad RealSpain

Personalised recommendations