Advertisement

Advantages of the Incorporation of an Active Upper-Limb Exoskeleton in Industrial Tasks

  • Andrea BlancoEmail author
  • José M. Catalán
  • Jorge A. Díez
  • José V. García
  • Luis D. Lledó
  • Emilio Lobato
  • Nicolás M. García-Aracil
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1093)

Abstract

The main objective of the study collected in this paper is to study the changes in the execution of a repetitive task of industrial field when it is carried out with the help of an active upper-limb exoskeleton. To do this, an experimentation has been carried out in which the aim is to compare the differences when performing a task with and without the exoskeleton. Results show that the incorporation of the active upper-limb exoskeleton supposes an advantage in the execution of the task, in terms of precision and control against disturbances.

Keywords

Upper-limb exoskeleton Validation Industrial tasks Assistive devices 

Notes

Acknowledgments

This work has been supported by the AURORA project through the grant DPI2015-70415-C2-R of the Ministerio de Economía y Competitividad of Spain, by Centre for the Development of Industrial Technology (CDTI) and by Conselleria d’Educacio, Cultura i Esport de la Generalitat Valenciana and by the European Social Fund “Investing in your future”, through the scholarships ACIF 2018/214, ACIF 2016/216 and APOTIP 2017/001.

References

  1. 1.
    Núñez, G., Mevic, M., García Martín, M.C., Sánchez Lemus, G.: Factores de riesgo laboral para tenosinovitis del miembro superior. Medicina y Seguridad del Trabajo 61(241), 486–503 (2015)Google Scholar
  2. 2.
    Roquelaure, Y., LeManach, A.P., Ha, C., Poisnel, C., Bodin, J., Descatha, A., Imbernon, E.: Working in temporary employment and exposure to musculoskeletal constraints. Occup. Med. 62(7), 514–518 (2012)CrossRefGoogle Scholar
  3. 3.
    De Looze, M.P., Bosch, T., Krause, F., Stadler, K.S., O’Sullivan, L.W.: Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics 59(5), 671–681 (2016)CrossRefGoogle Scholar
  4. 4.
    Blanco, A., Díez, J.A., López, D., García, J.V., Catalán, J.M., García-Aracil, N.: Human-centered design of an upper-limb exoskeleton for tedious maintenance tasks. In: International Symposium on Wearable Robotics, pp. 515–519. Springer (2018)Google Scholar
  5. 5.
    Díaz, I., Catalan, J.M., Badesa, F.J., Justo, X., Lledo, L.D., Ugartemendia, A., Gil, J.J., Díez, J., García-Aracil, N.: Development of a robotic device for post-stroke home tele-rehabilitation. Adv. Mech. Eng. 10(1), 1687814017752,302 (2018)Google Scholar
  6. 6.
    Catalán, J., García, J., López, D., Ugartemendia, A., Díaz, I., Lledo, L., Blanco, A., Barios, J., Bertomeu, A., García-Aracil, N.: Evaluation of an upper-limb rehabilitation robotic device for home use from patient perspective. In: International Conference on NeuroRehabilitation, pp. 449–453. Springer (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andrea Blanco
    • 1
    Email author
  • José M. Catalán
    • 1
  • Jorge A. Díez
    • 1
  • José V. García
    • 1
  • Luis D. Lledó
    • 1
  • Emilio Lobato
    • 2
  • Nicolás M. García-Aracil
    • 1
  1. 1.Department of Systems Engineering and AutomationMiguel Hernández UniversityElcheSpain
  2. 2.MovilFrio S.L.AlicanteSpain

Personalised recommendations