Advertisement

Using a Collaborative Robot to the Upper Limb Rehabilitation

  • Lucas de Azevedo FernandesEmail author
  • José Luis Lima
  • Paulo Leitão
  • Alberto Yoshiro Nakano
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1093)

Abstract

Rehabilitation is a relevant process for the recovery from dysfunctions and improves the realization of patient’s Activities of Daily Living (ADLs). Robotic systems are considered an important field within the development of physical rehabilitation, thus allowing the collection of several data, besides performing exercises with intensity and repeatedly. This paper addresses the use of a collaborative robot applied in the rehabilitation field to help the physiotherapy of upper limb of patients, specifically shoulder. To perform the movements with any patient the system must learn to behave to each of them. In this sense, the Reinforcement Learning (RL) algorithm makes the system robust and independent of the path of motion. To test this approach, it is proposed a simulation with a UR3 robot implemented in V-REP platform. The main control variable is the resistance force that the robot is able to do against the movement performed by the human arm.

Keywords

Robotics rehabilitation Collaborative robots Simulation Reinforcement learning algorithm 

References

  1. 1.
    Rehabilitation 2030: A call for action plan: Then need to scale up rehabilitation (2017)Google Scholar
  2. 2.
    Chatterji, S., Byles, J., Cutler, D., Seeman, T., Verdes, E.: Health, Functioning, and disability in older adults - presents status and future implications. Lancet 385(9967), 563–575 (2015)CrossRefGoogle Scholar
  3. 3.
    Union Européenne des Médicins Spécialistes (UEMS) e Académie Européenne de Médicine e Réadaptation: Livro Branco de Medicina Física e de Reabilitação na Europa. Sociedade Portuguesa de Medicina Fisica e de Reabilitação, Coimbra (2009)Google Scholar
  4. 4.
    Turolla, A.: An overall framework for neurorehabilitation robotics: implications for recovery. In: Rehabilitation Robotics, pp. 15–27. Elsevier (2018)Google Scholar
  5. 5.
    Djikers, M., deBear, P., et al.: Patient and staff acceptance of robotic technology in occupationl therapy: a pilot study. J. Rehabil. Res. Dev. 28(2), 33–44 (1991)CrossRefGoogle Scholar
  6. 6.
    Novak, D., Riener, R.: Control strategies and artificial intelligence in rehabilitation robotics. AI Mag. 36(4), 23–33 (2015)CrossRefGoogle Scholar
  7. 7.
    Yap, R., Kono, D., et al.: Development of wereable gait assist robot using interactive motor rhythmic stimulation to upper and lower limbs. AI Mag. 36(4), 23–33 (2015)CrossRefGoogle Scholar
  8. 8.
    Casadio, M., Sanguineti, V., et al.: Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation. Technol. Health Care (14), 123–142 (2006)Google Scholar
  9. 9.
    Amirabdollahian, F., Taylor, M., et al.: The Gentle/S project: a new method of delivering neuro-rehabilitation. Assistive Technology - Added Value to the Quality of Life (10), 36–41 (2001)Google Scholar
  10. 10.
    Kemna, S., Culmer, P., et al.: Developing a user interface for the iPAM stroke rehabilitation system. In: IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan (2009)Google Scholar
  11. 11.
    Hogan, N., Krebs, H.I., Charnnarong, J., Srikrishna, P., Sharon, A.: Mit-manus: a workstation for manual therapy and training. I. In: Proceedings IEEE International Workshop on Robot and Human Communication, pp. 161–165. IEEE (1992)Google Scholar
  12. 12.
    Reharob: Reharob (2000). http://reharob.manuf.bme.hu. Accessed 06 May 2019
  13. 13.
    Loureiro, R., Harwin, W., et al.: Advances in upper limb stroke rehabilitation. Med. Biol. Eng. Comput. 49(1), 1103–1118 (2011)CrossRefGoogle Scholar
  14. 14.
    Coppelia Robotics. http://www.coppeliarobotics.com. Accessed 17 June 2019
  15. 15.
    Coppelia Robotics Homepage: Max. joint torques - 17260. https://www.universal-robots.com/how-tos-and-faqs/faq/ur-faq/max-joint-torques-17260/. Accessed 02 Sept 2019
  16. 16.
    Ribeiro, D.C., Estivalet, M.G., Loss, J.F.: Modelo para estimativa da força e torque muscular durante a abdução do ombro. revista portuguesa de ciências do desporto 8(3), 321–329 (2008)Google Scholar
  17. 17.
    Sutton, R., Barto, A.: Reinforcement Learning: An Introduction, 2nd edn. A Bradford Book, London (2015)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidade Tecnológica Ferderal do ParanáCuritibaBrazil
  2. 2.CeDRI - Research Centre in Digitalization and Intelligent RoboticsPolytechnic Institute of Bragança and INESC TECPortoPortugal

Personalised recommendations